精英家教网 > 高中数学 > 题目详情
已知平面上一定点C(2,O)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且(
PC
+
1
2
PQ
)•(
PC
-
1
2
PQ
)=0

(1)问点P在什么曲线上?并求出该曲线的方程;
(2)若EF为圆N:x2+(y-1)2=1的任一条直径,求
PE
PF
的最大值.
分析:(1)根据平面向量数量积的运算性质,得4
|PC|
2=
|PQ|
2.设P(x,y),则Q(8,y),运用距离公式化简可得3x2+4y2=48,整理得
x2
16
+
y2
12
=1,由此可得点P的轨迹是以(±2,0)为焦点的椭圆;
(2)根据题意,得|NE|=|NF|=1且
NE
=-
NF
,由此化简得
PE
PF
=
PN
2
-1,根据椭圆方程与两点的距离公式,求出当P的纵坐标为-3时
PN
2
的最大值为20,由此即得
PE
PF
=
PN
2
-1的最大值为19.
解答:解:(1)设P的坐标为P(x,y),则Q(8,y)
(
PC
+
1
2
PQ
)•(
PC
-
1
2
PQ
)=0
,得:4
|PC|
2=
|PQ|
2
∴4[(x-2)2+y2]=[(x-8)2+(y-y)2],化简得3x2+4y2=48,
∴点P的轨迹方程为
x2
16
+
y2
12
=1,此曲线是以(±2,0)为焦点的椭圆;
(2)∵EF为圆N的直径,∴|NE|=|NF|=1,且
NE
=-
NF

PE
PF
=(
PN
+
NE
)•(
PN
+
NF
)=(
PN
+
NF
)•(
PN
-
NF
)=
PN
2
-1
∵点P为椭圆
x2
16
+
y2
12
=1上的点,满足x2=16-
4y2
3

∵N(0,1),∴
PN
2
=x2+(y-1)2=-
1
3
(y+3)2+20
∵椭圆
x2
16
+
y2
12
=1上点P纵坐标满足 y∈[-2
3
,2
3
]
∴当y=-3时,
PN
2
的最大值为20,故
PE
PF
=
PN
2
-1的最大值等于19.
点评:本题给出动点P的轨迹,求其方程并研究向量数量积的最大值,着重考查了向量的数量积、椭圆的标准方程与简单性质和直线与圆等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上一定点C(4,0)和一定直线l:x=1,P为该平面上一动点,作PQ⊥l,垂足为Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)问:点P在什么曲线上?并求出该曲线的方程;
(2)设直线l:y=kx+1与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上一定点C(-1,0)和一直线l:x=-4,P(x,y)为该平面上一动点,作PQ⊥l,垂足为Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)求点P的轨迹方程;
(2)点O是坐标原点,过点C的直线与点P的轨迹交于A,B两点,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)已知平面上一定点C(-1,0)和一定直线l:x=-4.P为该平面上一动点,作PQ⊥l,垂足为Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)问点P在什么曲线上,并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若
OA
OB
=(1+λ)
OC
,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上一定点C(4,0)和一定直线为该平面上一动点,作,垂足为Q,且.

   (1)问点P在什么曲线上?并求出该曲线的方程;

   (2)设直线与(1)中的曲线交于不同的两点A、B,是否存在实数k,使得以线段AB为直径的圆经过点D(0,-2)?若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案