精英家教网 > 高中数学 > 题目详情
14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上存在一点P满足|OP|为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是(  )
A.(1,$\frac{\sqrt{5}}{2}$]B.(1,$\frac{\sqrt{7}}{2}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\frac{\sqrt{7}}{2}$,+∞)

分析 设P(x,y),由以|OP|为边长的正方形面积等于2ab,可得x2+y2=2ab,从而可得x2=$\frac{(2ab+{b}^{2}){a}^{2}}{{c}^{2}}$≥a2,即可求出双曲线离心率的取值范围.

解答 解:由题意,设P(x,y),则
∵以|OP|为边长的正方形面积等于2ab,
∴x2+y2=2ab,
∴x2+b2($\frac{{x}^{2}}{{a}^{2}}$-1)=2ab,
∴x2=$\frac{(2ab+{b}^{2}){a}^{2}}{{c}^{2}}$≥a2
∴2ab+b2≥c2
∴2b≥a,
∴4(c2-a2)≥a2
∴e≥$\frac{\sqrt{5}}{2}$.
故选:C.

点评 本题考查双曲线的简单性质,考查学生的计算能力,确定x2=$\frac{(2ab+{b}^{2}){a}^{2}}{{c}^{2}}$≥a2是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{lgx,x≥\frac{3}{2}}\\{lg(3-x),x<\frac{3}{2}}\end{array}\right.$,若方程f(x)=k无实数根,则实数k的取值范围是k<$lg\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=loga(x+1),(a>0,且a≠1).
(1)求函数f(x)的解析式;
(2)若-1<f(1)<1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=mx(m为常数,m>0且m≠1).设$f({a_1}),f({a_2}),…,f({a_n})(n∈{N^*})$是首项为4,公比为2的等比数列.
(1)求数列{an}的通项公式;
(2)若bn=an•f(an),且数列{bn}的前n项和Sn,当$m=\sqrt{2}$时,求Sn
(3)若cn=an•f(n),问是否存在实数m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=2,求下列各式的值
(1)$\frac{1}{{2sinxcosx+{{cos}^2}x}}$;
(2)sin2α+6sinαcosα-cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{2x+1}{x-1}$,其定义域是[-8,-4),则下列说法正确的是(  )
A.f(x)有最大值$\frac{5}{3}$,无最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,无最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的三边a,b,c满足$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$,则角B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出函数y=|x-1|的单调增区间是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知m为一条直线,α,β为两个不同的平面,则下列说法正确的是(  )
A.若m∥α,α∥β,则m∥βB.若α⊥β,m⊥α,则m⊥βC.若m∥α,α⊥β,则m⊥βD.若m⊥α,α∥β,则m⊥β

查看答案和解析>>

同步练习册答案