精英家教网 > 高中数学 > 题目详情
2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是(  )
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

分析 解不等式,求出不等式的解集,从而求出答案.

解答 解:∵$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$,
∴2•2x+2>6-3•2x+3,
∴2x>$\frac{7}{5}$,
解得:x>log2$\frac{7}{5}$,
而log2$\frac{7}{5}$<2,
故选:D.

点评 本题考查了解不等式问题,考查指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知直线l过点(0,1),且倾斜角为$\frac{π}{6}$,当此直线与抛物线x2=4y交于A,B时,|AB|=(  )
A.$\frac{16}{3}$B.16C.8D.$\frac{{16\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线y=b与函数f(x)=$\frac{1}{3}$x3-4x+4的图象有3个交点,则b的取值范围(-$\frac{4}{3}$,$\frac{28}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2的直线交双曲线右支于A、B两点.若AF2⊥AF1,且|BF2|=2|AF1|,则双曲线的离心率为(  )
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知O是△ABC中的一点,$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,则△OAB与△OAC的面积之比为(  )
A.1:3B.1C.5:3D.3:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上一点,F1,F2为双曲线的左、右焦点,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O为坐标原点),且|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,则双曲线离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{6}$+1C.$\sqrt{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线x=4y2的焦点坐标是  (  )
A.($\frac{1}{16}$,0)B.(1,0)C.(0,$\frac{1}{16}$)D.(0,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x0∈R,lnx0≥x0-1.命题q:?θ∈R,sinθ+cosθ>-1.则下列命题中为真命题的是(  )
A.p∧(?q)B.(?p)∨qC.(?p)∧(?q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x∈(-2,$\frac{2}{3}$).

查看答案和解析>>

同步练习册答案