精英家教网 > 高中数学 > 题目详情
(平)已知数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2),且
an+1
an
=kn+1

(1)求实数k的值;
(2)设g(x)=
anxn-1
(n-1)!
,f(x)是数列{g(x)}的前n项和,求f(x)的解析式;
(3)求证:不等式f(2)<
3
n
g(3)
对n∈N+恒成立.
分析:(1)由题设知
an+1
an
=
a n
an-1
+1
=
a2
a1
+n-1
,由
a2
a1
=k+1
,知
an+1
an
=n+k=kn+1
,由此能求出k.
(2)由
an
an-1
=n-1+1=n
,知an=n•an-1=n(n-1)•an-2=…=n!,由g(x)=
anxn-1
(n-1)!
=
n!•xn-1
(n-1)!
=n•xn-1,能求出f(x)的解析式.
(3)由f(2)=n(1+2n-1),知
3
n
g(3)=
3
n
n•3n-1=3n
,故不等式f(2)<
3
n
g(3)
对n∈N+恒成立等价于n(1+2n-1)<3n对n∈N+恒成立.用数学归纳法能够证明之.
解答:解:(1)∵数列{an}中,a1=1,an+1an-1=anan-1+an2(n∈N+,n≥2)
an+1
an
=kn+1

an+1
an
=
a n
an-1
+1
=
an-1
an-2
+1+1
=…=
a2
a1
+n-1

a2
a1
=k+1

an+1
an
=n+k=kn+1

∴(n-1)k=n-1,
∴k=1.
(2)∵
an+1
an
=kn+1
,k=1,
an
an-1
=n-1+1=n

∴an=n•an-1=n(n-1)•an-2=…=n!,
g(x)=
anxn-1
(n-1)!
=
n!•xn-1
(n-1)!
=n•xn-1
∴g(1)=n,g (2)=n• 2n-1,g(3)=n•3n-1,…,g(n)=n•nn-1
∵f(x)是数列{g(x)}的前n项和,
∴f(x)=g(1)+g(2)+g(3)+…+g(n)
=n+n•2n-1+n•3n-1+…+n•nn-1
=n(1+2n-1+3n-1+…+nn-1).
证明:(3)∵f(2)=n(1+2n-1),
3
n
g(3)=
3
n
n•3n-1=3n

∴不等式f(2)<
3
n
g(3)
对n∈N+恒成立等价于n(1+2n-1)<3n对n∈N+恒成立.
用数学归纳法证明:
①当n=1时,1×(1+1)=2<3,成立;
②假设当n=k时成立,即k(1+2k-1)<3k成立,
则当n=k+1时,(k+1)(1+2k)=2k+1+2k•2k-1+2•2k-1+1-k
=2k•3k+k•2k+1-k
<3k•3k+1-k
<3k+1,成立.
由①②知n(1+2n-1)<3n对n∈N+恒成立.
∴不等式f(2)<
3
n
g(3)
对n∈N+恒成立.
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

同步练习册答案