精英家教网 > 高中数学 > 题目详情

【题目】某校高一班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

1求分数在的频数及全班人数;

2求分数在之间的频数,并计算频率分布直方图中间矩形的高;

3若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

【答案】(1)2,25;(2);(3).

【解析】

1先由频率分布直方图求出的频率,结合茎叶图中得分在的人数即可求得本次考试的总人数;2根据茎叶图的数据,利用1中的总人数减去外的人数,即可得到内的人数,从而可计算频率分布直方图中间矩形的高;3用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果.

1分数在的频率为

由茎叶图知:

分数在之间的频数为2

全班人数为

2分数在之间的频数为

频率分布直方图中间的矩形的高为

3之间的3个分数编号为之间的2个分数编号为

之间的试卷中任取两份的基本事件为:

10个,

其中,至少有一个在之间的基本事件有7个,

故至少有一份分数在之间的概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1y21的左右顶点是双曲线C2的顶点,且椭圆C1的上顶点到双曲线C2的渐近线的距离为

(1)求双曲线C2的方程;

(2)若直线与C1相交于M1M2两点,与C2相交于Q1Q2两点,且5,求|M1M2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四面体ABCD中,DA=DB=DC=DADBDC两两互相垂直,点是△ABC的中心.

(1)求直线DA与平面ABC所成角的大小(用反三角函数表示)

(2)OEAD,垂足为E,求ΔDEO绕直线DO旋转一周所形成的几何体的体积;

(3)将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线BC所成角记为,求的取值范图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-ln(x+m).

(1)x=0f(x)的极值点,求m,并讨论f(x)的单调性;

2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:∥平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O经过椭圆C=1ab0)的两个焦点以及两个顶点,且点(b)在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若直线l与圆O相切,与椭圆C交于MN两点,且|MN|=,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦距为2,左右焦点分别为,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线相切.

求椭圆C的方程;

设不过原点的直线l与椭圆C交于AB两点.

若直线的斜率分别为,且,求证:直线l过定点,并求出该定点的坐标;

若直线l的斜率是直线OAOB斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程;

(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.

求证:(1)DE∥平面ABB1A1

(2)BC1⊥平面A1B1C.

查看答案和解析>>

同步练习册答案