【题目】已知点F1(﹣1,0),F2(1,0),动点M到点F2的距离是 ,线段MF1的中垂线交线段MF2于点P. (Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.
【答案】解:(Ⅰ)∵P在线段MF1的中垂线上,∴PM=PF1 , 又P在线段MF2上,∴PM+PF2=MF2=2 ,
∴PF1+PF2=2 ,而F1F2=2,
∴动点P的轨迹G是以F1 , F2为焦点的椭圆,
设椭圆方程为 ,则2a=2 ,c=1,∴a= ,b=1,
∴动点P的轨迹方程为 .
(Ⅱ)①当l的斜率不存在时,不妨取 , ,
∴C(2,﹣ ),直线AC的方程为 x+y﹣ =0,
此时易知AC过点 .
②当l的斜率存在时,设l的方程为:y=k(x﹣1)
联立方程组 ,消去y得:(1+2k2)x2﹣4k2x+2k2﹣2=0,
设A(x1 , y1)、B(x2 , y2),则C(2,y2),且x1+x2= , ,
直线AC方程为 ,
∴ = = = = .
当 时,y=0;
综上可知,直线AC恒过定点 .
【解析】(I)由中垂线性质可得PM+PF2=MF2=2 ,故而P点轨迹为F1 , F2为焦点的椭圆,利用定义求出a,b即可得出方程;(II)讨论直线l的斜率,联立方程组,利用根与系数的关系求出直线AC的方程,根据方程判断即可.
科目:高中数学 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建个桥墩,记余下工程的费用为万元.
(1)试写出关于的函数关系式;(注意:)
(2)需新建多少个桥墩才能使最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,是假命题的是( )
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bnbn+2}的前n项和为Tn , 若对于任意的正整数n,都有Tn<m2﹣m+ 成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表(单位:人)
(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?(结果保留3位小数)
(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取5人
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机抽取2人赠送一件礼物,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式及数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收费比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:
消费次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
频数 | 60 | 20 | 10 | 5 | 5 |
假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(3)设该公司从至少消费两次,求这的顾客消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出2人中恰有1人消费两次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知双曲线C: =1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ= ,且 |,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为 ,求a+b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com