(本小题满分14分)
已知函数,.
(1)如果函数在上是单调增函数,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.
(1)(2)()
【解析】
试题分析:(1)当时,在上是单调增函数,符合题意. ……1分
当时,的对称轴方程为,
由于在上是单调增函数,
所以,解得或,
所以. ……3分
当时,不符合题意.
综上,的取值范围是. ……4分
(2)把方程整理为,
即为方程. ……5分
设 ,
原方程在区间()内有且只有两个不相等的实数根,
即为函数在区间()内有且只有两个零点. ……6分
, ……7分
令,因为,解得或(舍), ……8分
当时, , 是减函数;
当时, ,是增函数. ……10分
在()内有且只有两个不相等的零点, 只需 ……13分
即 ∴,
解得, 所以的取值范围是() . ……14分
考点:本小题主要考查二次函数的单调性和利用导数解决函数的单调性、最值问题,考查学生对导数的工具性的应用能力和分类讨论思想和数形结合思想的应用.
点评:研究高次函数的单调性一般用导数,前提是合理构造函数并正确求导,而不论用什么方法考查函数的性质,都不能忘记函数的定义域.
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com