【题目】明代商人程大位在公元1592年编撰完成《算法统宗》一书.书中有如下问题:“今有女子善织,初日迟,次日加倍,第三日转速倍增,第四日又倍增,织成绢六丈七尺五寸.问各日织若干?”意思是:“有一位女子善于织布,第一天由于不熟悉有点慢,第二天起每天织的布都是前一天的2倍,已知她前四天共织布6丈7尺5寸,问这位女子每天织布多少?”根据文中的已知条件,可求得该女了第一天织布________尺,若织布一周(7天),共织________尺.(其中1丈为10尺,1尺为10寸)
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点,离心率为,点是椭圆上的动点,的最大面积是.
(1)求椭圆的方程;
(2)圆E经过椭圆的左、右焦点,且与椭圆在第一象限的交点为,且三点共线,为坐标原点,直线交椭圆于两点,且.
(i) 求直线的斜率;
(ii)当的面积取到最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.
(1)求的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) | |||||
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆(a>b>0)的左、右焦点分别为F1,F2,过点F2的直线交椭圆于M,N两点.已知椭圆的短轴长为,离心率为.
(1)求椭圆的标准方程;
(2)当直线MN的斜率为时,求的值;
(3)若以MN为直径的圆与x轴相交的右交点为P(t,0),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“牟合方盖”是我国古代数学家刘徽在研究球的体积过程中构造在一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖),其直观图如图所示,图中四边形是体现其直观性所做的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别是( )
A.a,bB.a,cC.a,dD.b,d
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过焦点且垂直于长轴的弦长为.
(1)已知点是椭圆上两点,点为椭圆的上顶点,的重心恰好是椭圆的右焦点,求所
在直线的斜率;
(2)过椭圆的右焦点作直线,直线与椭圆分别交于点,直线与椭圆分别交于点,
且,求四边形的面积最小时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com