精英家教网 > 高中数学 > 题目详情

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理: “幂势既同,则积不容异”.意思是:夹在两个乎行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现将曲线轴旋转一周得到的几何体叫做椭球体,记为,几何体的三视图如图所示.根据祖暅原理通过考察可以得到的体积,则的体积为( )

A. B. C. D.

【答案】D

【解析】

由三视图可得几何体是一个底面半径为高为的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点上底面为底面的圆锥由祖暅原理可得结果.

由三视图可得几何体是一个底面半径为高为的圆柱,

在圆柱中挖去一个以圆柱下底面圆心为顶点上底面为底面的圆锥,

则圆柱的体积为

圆锥的体积

利用祖暅原理可计半椭球的体积为

所以的体积为,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省每年损失耕地20万亩,每亩耕地价值24000元,为了减小耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少t万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,t变动的范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.

组别

分组

回答正确的人数

回答正确的人数占本组的概率

第1组

[15,25)

5

0.5

第2组

[25,35)

0.9

第3组

[35,45)

27

第4组

[45,55)

0.36

第5组

[55,65)

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,已知曲线的参数方程为 为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知曲线,直线过定点(—2,2),且斜率为.O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线的直角坐标方程以及直线l的参数方程

(2)点P在曲线上,当时,求点P到直线l的最小距离并求点P的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上是增函数,且在定义域上是偶函数.

1)求p的值,并写出相应的函数的解析式.

2)对于(1)中求得的函数,设函数,问是否存在实数,使得在区间上是减函数,且在区间上是增函数?若存在,请求出q;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的零点个数;

(2)若,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着小汽车的普及,“驾驶证”已经成为现代人“必考”证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,需要通过四个科目的考试,其中科目二为场地考试在每一次报名中,每个学员有次参加科目二考试的机会(这次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试,或次都没有通过,则需要重新报名),其中前次参加科目二考试免费,若前次都没有通过,则以后每次参加科目二考试都需要交元的补考费.某驾校通过几年的资料统计,得到如下结论:男性学员参加科目二考试,每次通过的概率均为,女性学员参加科目二考试,每次通过的概率均为.现有一对夫妻同时报名参加驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.

1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;

2)求这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和,对任意,都有为常数)

(1)当时,求

(2)当时,

(ⅰ)求证:数列是等差数列;

(ⅱ)若对任意,必存在使得,已知,且,求数列的通项公式.

查看答案和解析>>

同步练习册答案