【题目】已知,,,若,().
(1)求函数的解析式;
(2)求函数在条件下的最小值;
(3)把的图像按向量平移得到曲线,过坐标原点作、分别交曲线于点、,直线交轴于点,当为锐角时,求的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,, O为DE的中点,.F为的中点,平面平面BCED.
(1)求证:平面 平面.
(2)线段OC上是否存在点G,使得平面EFG?说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者根据调查结果统计后,得到如下列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为.
非自学不足 | 自学不足 | 合计 | |
配有智能手机 | 30 | ||
没有智能手机 | 10 | ||
合计 |
请完成上面的列联表;
根据列联表的数据,能否有的把握认为“自学不足”与“配有智能手机”有关?
附表及公式: ,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司全年的纯利润为元,其中一部分作为奖金发给位职工,奖金分配方案如下首先将职工工作业绩(工作业绩均不相同)从大到小,由1到排序,第1位职工得奖金元,然后再将余额除以发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设为第位职工所得奖金额,试求并用和表示(不必证明);
(2)证明并解释此不等式关于分配原则的实际意义;
(3)发展基金与和有关,记为对常数,当变化时,求.(可用公式)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点,,,是椭圆上任意三点,,关于原点对称且满足.
(1)求椭圆的方程.
(2)若斜率为的直线与圆:相切,与椭圆相交于不同的两点、,求时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解地区足球特色学校的发展状况,某调查机构得到如下统计数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(Ⅰ)根据上表数据,计算与的相关系数,并说明与的线性相关性强弱(已知:,则认为与线性相关性很强;,则认为与线性相关性一般;,则认为与线性相关性较弱);
(Ⅱ)求关于的线性回归方程,并预测地区2019年足球特色学校的个数(精确到个)
参考公式:,,,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .
(Ⅰ)写出和的值,并用列举法写出集合;
(Ⅱ)用表示有限集合所含元素的个数,求的最小值;
(Ⅲ)有多少个集合对,满足,且?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
1当时,求曲线在处的切线方程;
2若是R上的单调递增函数,求a的取值范围;
3若函数对任意的实数,存在唯一的实数,使得成立,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:函数f(x)=lg(ax2-x+16a)的定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com