精英家教网 > 高中数学 > 题目详情
10.如图,四边形ABCD中(图1),E是BC的中点,DB=2,DC=1,BC=$\sqrt{5}$,AB=AD=$\sqrt{2}$,将(图1)沿直线BD折起,使二面角A-BD-C成锐二面角且三棱锥A-BDC的体积为$\frac{\sqrt{3}}{6}$.(如图2)
(1)求证:平面ABC⊥平面BDC;
(2)求直线AE与平面ADC所成角的正弦值.

分析 (1)取BD中点M,连接AM,ME,由已知得BD⊥AE,AM=1,ME=$\frac{1}{2}$,由三棱锥A-BDC体积为$\frac{\sqrt{3}}{6}$,得AE⊥平面BDC,由此能证明平面ABC⊥平面BDC.
(2)以M为原点MB为x轴,ME为y轴,建立空间直角坐标系M-xyz,利用向量法能求出直线AE与平面ADC所成角的正弦值.

解答 (1)证明:如图取BD中点M,连接AM,ME.
∵AB=AD=$\sqrt{2}$,∴AM⊥BD,
∵DB=2,DC=1,BC=$\sqrt{5}$,∴DB2+DC2=BC2
∴△BCD是BC为斜边的直角三角形,BD⊥DC,
∵E是BC的中点,∴ME为△BCD的中位线,∴ME=$\frac{1}{2}$,
∵AM⊥BD,ME⊥BD且AM、ME是平面AME内两相交于M的直线,
∴BD⊥平面AEM,∵AE?平面AEM,∴BD⊥AE,
∵AB=AD=$\sqrt{2}$,DB=2,
∴△ABD为等腰直角三角形,∴AM=$\frac{1}{2}$BD=1,
∵${S}_{△BDC}=\frac{1}{2}×BD×DC=\frac{1}{2}×2×1=1$,
二面角A-BD-C成锐二面角且三棱锥A-BDC的体积为$\frac{\sqrt{3}}{6}$,
设A到到平面BDC的距离为h,
∴$\frac{1}{3}×{S}_{△BDC}×h$=$\frac{1}{3}h=\frac{\sqrt{3}}{6}$,解得h=$\frac{\sqrt{3}}{2}$,
∴h2=AM2-ME2
∴h=AE,∴AE⊥平面BDC,
∵AE?平面ABC,∴平面ABC⊥平面BDC.
(2)解:如图,以M为原点MB为x轴,ME为y轴,建立空间直角坐标系M-xyz,
则由(1)及已知条件可知B(1,0,0),E(0,$\frac{1}{2}$,0),
A(0,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),D(-1,0,0),C(-1,1,0),
$\overrightarrow{DA}$=(1,$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{DC}$=(0,1,0),$\overrightarrow{AE}$=(0,0,-$\frac{\sqrt{3}}{2}$),
设平面ADC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DA}=x+\frac{1}{2}y+\frac{\sqrt{3}}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=y=0}\end{array}\right.$,
取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},0,-2$),
设直线AE与平面ADC所成角为θ,
则sinθ=|cos<$\overrightarrow{AE},\overrightarrow{n}$>|=|$\frac{\overrightarrow{AE}•\overrightarrow{n}}{|\overrightarrow{AE}|•|\overrightarrow{n}|}$|=|$\frac{-\sqrt{3}}{\sqrt{7}•\frac{\sqrt{3}}{2}}$|=$\frac{2\sqrt{7}}{7}$.
∴直线AE与平面ADC所成角的正弦值为$\frac{2\sqrt{7}}{7}$.

点评 本题主要考察线面垂直的证明以及线面角的正弦值求法.一般在证明线面垂直时,先转化为证明线线垂直.进而得到线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{2}$,则△ABC的形状是(  )
A.等边三角形B.锐角三角形C.斜三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式x2>2的解集是(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)对任意实数x,都有f(a+x)+f(x)=b.则y=f(x)是以2a为周期的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正方体ABCD-A1B1C1D1中:
(1)求二面角C-AD1-D的余弦值;
(2)求BB1与平面ACD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知在四棱锥P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且AD=DC=PA=$\frac{1}{2}$AB=1
(1)求证:BC⊥平面PAC;
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由;
(3)若点M是由(2)中确定的,且PA⊥AB,求四面体MPAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知t>0,若$\int_0^t(2x-1)dx=12$,则t=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直线PD⊥平面ABCD,ABCD为正方形,PD=AD,求直线PA与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l1:4x-3y+6=0和直线l2:x=0,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案