精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,则S3,S6-S3,S9-S6,S12-S9,成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T3
 
 
 
成等比数列.
分析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性.
解答:解:设等比数列{bn}的公比为q,首项为b1,则T3=b13q3,T6=b16q15,T9=b19q36,T12=b112q66,∴
T6
T3
=
b
3
1
q12
T9
T6
=
b
3
1
q21
T12
T9
=
b
3
1
q30
,成等比数列,故答案为
T6
T3
T9
T6
T12
T9
点评:本题主要考查类比推理,类比推理一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案