精英家教网 > 高中数学 > 题目详情
4.求函数y=lnx-x3+2x的导数.

分析 直接根据基本初等函数的导数公式得,(lnx)'=$\frac{1}{x}$;(x3)'=3x2;(2x)'=2xln2,再四则运算即可.

解答 解:根据基本初等函数的导数公式得,
(lnx)'=$\frac{1}{x}$;
(x3)'=3x2
(2x)'=2xln2,
再由导数的四则运算法则得,
原函数的导数为y'=$\frac{1}{x}$-3x2+2xln2.

点评 本题主要考查了基本初等函数的导数的求解,涉及对数函数,幂函数和指数函数的导数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设AB为过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点F任意一条弦,若M点在x轴上且直线MF为∠AMB的平分线,则称M为该椭圆的“右分点”.
(1)若椭圆E的离心率为$\frac{1}{2}$,右焦点到右准线的距离为3,求:
①椭圆E的方程;
②“右分点”M的坐标;
(2)猜想椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)“右分点”M的位置,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若s,t均为正数,且s+t=1,则$\frac{st}{(st+1)(st+4)}$的最大值是(  )
A.$\frac{4}{85}$B.$\frac{7}{72}$C.$\frac{1}{9}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若1,a,5成等差数列,4,b,9成等比数列,则ab=±18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=cos2x-2sinx的值域为[-3,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,矩形ABCD所在的平面垂直圆O所在的平面,AB是圆O的直径,M是CD上一点,且DM=EF,E、F是圆O上的点,∠EAF=∠FAB=30°.
(1)求证:DF⊥BF;
(2)求证:平面DAE∥平面MOF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若对数函数的图象经过点(27,3),求它的解析式及f(9)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点G是△ABC的重心,A(0,-2),B(0,2),在x轴上有一点M满足;|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R).
(I)求点C的轨迹方程.
(Ⅱ)直线l与C的轨迹交于P,Q两,弦PQ的中点坐标为(-$\frac{3}{4}$,$\frac{1}{4}$),求弦长|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=$\frac{\sqrt{2x-1}}{x-1}$的定义域.

查看答案和解析>>

同步练习册答案