精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)定义:对于函数,若存在,使成立,则称为函数的不动点.如果函数存在不动点,求实数的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)对函数求导,结合二次函数的性质讨论的范围,即可判断的单调性;(2)由存在不动点,得到有实数根,即有解,构造函数令,通过求导即可判断的单调性,从而得到的取值范围,即可得到的范围。

(1)的定义域为

对于函数

①当时,即时,恒成立.

恒成立.

为增函数;

②当,即时,

时,由,得

为增函数,减函数.

为增函数,

时,由恒成立,

为增函数。

综上,当时,为增函数,减函数,为增函数;当时,为增函数。

(2)

存在不动点,方程有实数根,即有解,

,得

时,单调递减;

时,单调递增;

时,有不动点,

的范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;

2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与直线相切且与圆外切。

(1)求圆心的轨迹的方程;

(2)设第一象限内的点在轨迹上,若轴上两点,满足. 延长分别交轨迹两点,若直线的斜率,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;

2)求频率分布直方图中的ab的值;

3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术·商功》:斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”下图解释了这段话中由一个长方体,得到堑堵阳马鳖臑的过程.已知堑堵的内切球(与各面均相切直径1,则鳖臑的体积最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体中,平面.

(Ⅰ)证明:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上单调递增,求实数的取值范围;

(Ⅲ)设函数,其中.证明:的图象在图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年在印度尼西亚日惹举办的亚洲乒乓球锦标赛男子团体决赛中,中国队与韩国队相遇,中国队男子选手ABCDE依次出场比赛,在以往对战韩国选手的比赛中他们五人获胜的概率分别是0.80.80.80.750.7,并且比赛胜负相互独立.赛会釆用53胜制,先赢3局者获得胜利.

1)在决赛中,中国队以31获胜的概率是多少?

2)求比赛局数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期低于平均数的患者,称为短潜伏者,潜伏期不低于平均数的患者,称为长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中长潜伏者的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案