精英家教网 > 高中数学 > 题目详情

【题目】已知

时,若上为减函数,上是增函数,求值;

对任意恒成立,求的取值范围.

【答案】12.

【解析】

试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将代入得到表达式,求导,将已知转化为,转化恒成立问题,从而求出k的值;第二问,构造函数转化为上恒成立,对进行二次求导,判断函数的单调性,求出最值,确定a的取值范围.

试题解析:时,

上为减函数,则

上是增函数,则

6分

,设

1时,,所以上是减函数,不恒成立;

2时,,所以上是增函数,的函数值由负到正,必有,两边取自然对数得,

所以,上是减函数,上是增函数,

所以,

因此,即a的取值范围是.12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知1是函数f(x)=ax2+bx+c(a>b>c)的一个零点,若存在实数x0.使得f(x0)<0.则f(x)的另一个零点可能是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得.

(1)求家庭的月储蓄y对月收入x的线性回归方程

(2)判断变量xy之间是正相关还是负相关;

(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.

附:线性回归方程中,

,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,P(1,1),Ax,0)(x>0),B(0,y)(y>0)

(Ⅰ)若x=,求y的值;

(Ⅱ)若OAB的周长为2,求向量的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(﹣1,1)上为减函数的是(  )
A.
B.y=cosx
C.y=ln(x+1)
D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】排列而成的项数列满足:每项都大于它之前的所有项或者小于它之前的所有项.

)满足条件的数列中,写出所有的单调数列.

)当时,写出所有满足条件的数列.

)满足条件的数列的个数是多少?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数,函数.

1)求函数的单调区间;

2)若函数的值域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境污染已经触目惊心,环境质量已经成为“十三五”实现全面建成小康社会奋斗目标的短板和瓶颈。绵阳某化工厂每一天中污水污染指数与时刻(时)的函数关系为其中为污水治理调节参数,且

(1)若,求一天中哪个时刻污水污染指数最低;

(2)规定每天中的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过,则调节参数应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=

(1)若f(2)=a,求a的值;

(2)当a=2时,若对任意互不相等的实数x1x2∈(mm+4),都有>0成立,求实数m的取值范围;

(3)判断函数gx)=fx)-x-2aa<0)在R上的零点的个数,并说明理由.

查看答案和解析>>

同步练习册答案