精英家教网 > 高中数学 > 题目详情
如下图所示,观察四个几何体,其中判断正确的是(  )
A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱
C

试题分析:利用几何体的结构特征进行分析判断,能够求出结果解:图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图③是棱锥.图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱.故选C
点评:本题考查几何体的结构特征,解题时要认真审题,注意熟练掌握基本概念.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,,AD=AB=1,AC和BD交于O点.
(I)求证:平面PBD丄平面PAC.
(II)当点A在平面PBD内的射影G恰好是ΔPBD的重心时,求二面角B-PD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC =90°,将△DBC沿BD向上折起,使面ABD垂直于面BDC,则C-DAB三棱锥的外接球的体积为­________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角梯形中,是等边三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体是底对角线的交点.

求证:(Ⅰ)∥面
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括
A.一个圆台、两个圆锥B.两个圆台、一个圆柱
C.两个圆台、一个圆锥D.一个圆柱、两个圆锥

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,如图所示的正方体的棱长为4,E、F分别为A1D1、AA1的中点,过C1、E、F的截面的周长为___________________.

查看答案和解析>>

同步练习册答案