精英家教网 > 高中数学 > 题目详情
点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且
PA
=
AB
,则称点P为“λ点”,那么直线l上有
 
个“λ点”.
分析:画出图象,设出A,P两点的坐标,进而写出点B的坐标,根据点在曲线上,整理出关于x的二次方程,根据二次方程的判别式得到方程恒有解,得到有无穷个点.
解答:精英家教网解:本题采作数形结合法易于求解,如图,
设A(m,n),P(x,x-1)
则B(2m-x,2n-x+1),
∵A,B在y=x2上,
∴n=m2,2n-x+1=(2m-x)2
消去n,整理得关于x的方程x2-(4m-1)x+2m2-1=0(1)
∵△=(4m-1)2-4(2m2-1)=8m2-8m+5>0恒成立,
∴方程(1)恒有实数解,
∴有无穷多解.
点评:本题考查直线与抛物线之间的关系,可以看做一个新定义问题,本题解题的关键是利用一元二次方程的解的判断求出结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省长沙市南雅中学高二(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是( )
A.直线l上的所有点都是“点”
B.直线l上仅有有限个点是“点”
C.直线l上的所有点都不是“点”
D.直线l上有无穷多个点(点不是所有的点)是“点”

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区八一中学高三(上)周练数学试卷(10)(理科)(解析版) 题型:选择题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是( )
A.直线l上的所有点都是“点”
B.直线l上仅有有限个点是“点”
C.直线l上的所有点都不是“点”
D.直线l上有无穷多个点(点不是所有的点)是“点”

查看答案和解析>>

科目:高中数学 来源:2009年北京市高考数学试卷(理科)(解析版) 题型:选择题

点P在直线l:y=x-1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是( )
A.直线l上的所有点都是“点”
B.直线l上仅有有限个点是“点”
C.直线l上的所有点都不是“点”
D.直线l上有无穷多个点(点不是所有的点)是“点”

查看答案和解析>>

同步练习册答案