精英家教网 > 高中数学 > 题目详情

已知f(x)=logax(a>1)的导函数是f′(x),记A=f′(a),B=f(a+1)-f(a),C=f′(a+1)则


  1. A.
    A>B>C
  2. B.
    A>C>B
  3. C.
    B>A>C
  4. D.
    C>B>A
A
分析:设M坐标为(a,f(a)),N坐标为(a+1,f(a+1)),利用导数及直线斜率的求法得到A、B、C分别为对数函数在M处的斜率,直线MN的斜率及对数函数在N处的斜率,根据对数函数的图象可知大小,得到正确答案.
解答:记M(a,f(a)),N(a+1,f(a+1)),
则由于,表示直线MN的斜率;
A=f′(a)表示函数f(x)=logax在点M处的切线斜率;
C=f′(a+1)表示函数f(x)=logax在点N处的切线斜率.
所以,A>B>C.
故选A
点评:此题考查学生会利用导数求过曲线上某点切线的斜率,掌握直线斜率的求法,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案