精英家教网 > 高中数学 > 题目详情

【题目】已知偶函数的定义域为,值域为

(1)求实数的值;

(2)若,求实数的值;

(3)若,求的值.

【答案】(1);(2);(3)

【解析】

1)根据函数为偶函数,,构造关于的方程组,可得的值;

2)由(1)中函数的解析式,分别令,解得,结合题中所给的集合E,可求得的可取值;

3)求出函数的导函数,判断函数的单调性,进而根据函数的值域为,分两种情况讨论,构造关于的方程组,进而得到的值.

(1)因为函数为偶函数,

所以,即

所以,因为为非零实数,

所以,即

(2)令f(a)=0,即,a=±1,取a=﹣1;

令f(a)=,即,a=±2,取a=﹣2,

故a=﹣1或﹣2.

(3)∵是偶函数,且

则函数f(x)在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.

∵x≠0,∴由题意可知:

,则有,即

整理得,此时方程组无负解;

,则有,即

∴m,n为方程x2﹣3x+1=0,的两个根.∵,∴m>n>0,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆交于两点,的周长为.

(1)求椭圆的方程;

(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择物理、化学和生物三个选考科目,则学生甲的选考方案确定,“物理、化学和生物为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

试估计该学校高一年级确定选考生物的学生有多少人?

写出选考方案确定的男生中选择物理、化学和地理的人数(直接写出结果)

从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从集合中任取三个不同的元素作为直线的值,若直线倾斜角小于,且轴上的截距小于,那么不同的直线条数有( )

A. 109B. 110C. 111D. 120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数)

1)求的最小值;

2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,则对此不等式描叙正

确的是( )

A. 至少存在一个以为边长的等边三角形

B. 则对任意满足不等式的都存在为边长的三角形

C. 则对任意满足不等式的都存在为边长的三角形

D. 则对满足不等式的不存在为边长的直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

)求证:平面

)求证:平面平面

查看答案和解析>>

同步练习册答案