精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证:

【答案】(Ⅱ)见解析.

【解析】

试题分析:(1)令 ,只要满足对任意 都有 ,对 分情况讨论即可;

2)对要证明的不等式等价变形,结合(1)中结论即可得证.

试题解析:()令,则

时,由于,有

于是上单调递增,从而,因此上单调递增,即

时,由于,有

于是上单调递减,从而

因此上单调递减,即不符;

时,令,当时,

,于是上单调递减,

从而,因此上单调递减,

而且仅有不符.

综上可知,所求实数的取值范围是.

(Ⅱ)对要证明的不等式等价变形如下:

对于任意的正整数,不等式恒成立,等价变形

相当于(2)中的情形,

上单调递减,即

,得:都有成立;

得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,ABDCAEDCBEAD.MN分别是ADBE上的点,且AM=BN,将三角形ADE沿AE折起,则下列说法正确的是 (填上所有正确说法的序号).

不论D折至何位置(不在平面ABC)都有MN平面DEC

不论D折至何位置都有MNAE

不论D折至何位置(不在平面ABC)都有MNAB

在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市一汽车出租公司为了调查AB两种车型的出租情况,现随机抽取了这两种车型各100辆,分别统计了每辆车某个星期内的出租天数,统计数据如下表:

A车型 B车型

出租天数

1

2

3

4

5

6

7

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

车辆数

14

20

20

16

15

10

5

(Ⅰ)从出租天数为3天的汽车(仅限AB两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;

(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;

(Ⅲ)

(ⅰ)试写出AB两种车型的出租天数的分布列及数学期望;

(ⅱ)如果两种车辆每辆车每天出租获得的利润相同,该公司需要从AB两种车型中购买一辆(注:两种车型的采购价格相当),请你根据所学的统计知识,建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.

(1)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求的值;

(3)在满足(2)的条件下,估计1月份该市居民用户平均用电费用(同一组中的数据用该组区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点到定点的距离和它到直线的距离

之比是常数,记动点的轨迹为.

(1)求轨迹的方程;

(2)过点且不与轴重合的直线,与轨迹交于,两点,线段的垂直平分线与轴交于点,与轨迹是否存在点,使得四边形为菱形?若存在,请求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最后一位选手的成绩.

(Ⅰ)求乙班总分超过甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过抛物线上一点作抛物线的切线轴于点,交轴于点,当时,

1)判断的形状,并求抛物线的方程;

2)若两点在抛物线上,且满足,其中点,若抛物线上存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合P={x|-2≤x≤10},Q={x|1-mx≤1+m}.

(1)求集合RP

(2)若PQ,求实数m的取值范围;

(3)若PQQ,求实数m的取值范围.

查看答案和解析>>

同步练习册答案