精英家教网 > 高中数学 > 题目详情

【题目】“二万五千里长征”是1934年10月到1936年10月中国工农红军进行的一次战略转移,是人类历史上的伟大奇迹,向世界展示了中国工农红军的坚强意志,在期间发生了许多可歌可泣的英雄故事.在中国共产党建党周年之际,某中学组织了“长征英雄事迹我来讲”活动,已知该中学共有高中生名,用分层抽样的方法从该校高中学生中抽取一个容量为的样本参加活动,其中高三年级抽了人,高二年级抽了人,则该校高一年级学生人数为( )

A.B.C.D.

【答案】C

【解析】

先计算高一年级抽取的人数,然后计算抽样比,再计算高一年级的总人数.

因为用分层抽样的方法从某校学生中抽取一个容量为的样本,其中高三年级抽人,高二年级抽人,所以高一年级要抽取人,因为该校高中学共有名学生,所以各年级抽取的比例是,所以该校高一年级学生人数为人,选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在边长为4正方体中,的中点,,点在正方体表面上移动,且满足,则点和满足条件的所有点构成的图形的面积是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p是等差数列;命题q:等式对任意恒成立,其中kb是常数.

1)若pq的充分条件,求kb的值;

2)对于(1)中的kb,问p是否为q的必要条件,请说明理由;

3)若p为真命题,对于给定的正整数n和正数M,数列满足条件,试求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化年除夕18时和初一2时,国家环保部门对8个城市空气中浓度监测的数据如表单位:微克立方米

除夕18浓度

初一2浓度

北京

75

647

天津

66

400

石家庄

89

375

廊坊

102

399

太原

46

115

上海

16

17

南京

35

44

杭州

131

39

求这8个城市除夕18时空气中浓度的平均值;

环保部门发现:除夕18时到初一2时空气中浓度上升不超过100的城市都是禁止燃放烟花爆竹的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹从以上8个城市中随机选取3个城市组织专家进行调研,记选到禁止燃放烟花爆竹的城市个数为X,求随机变量y的分布列和数学期望;

2017年除夕18时和初一2时以上8个城市空气中浓度的方差分别为,比较的大小关系只需写出结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx.

1)求函数y=fx)的单调区间;

2)若曲线y=fx)与直线ybbR)有3个交点,求实数b的取值范围;

3)过点P(﹣10)可作几条直线与曲线y=fx)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌赛马是《史记》中记载的一个故事,说的是齐国大将军田忌经常与齐国众公子赛马,孙膑发现田忌的马和其他人的马相差并不远,都分为上、中、下三等.于是孙膑给田忌将军献策:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得了许多赌注.假设田忌的各等级马与某公子的各等级马进行一场比赛,田忌获胜的概率如下表所示:

比赛规则规定:一次比赛由三场赛马组成,每场由公子和田忌各出一匹马参赛,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.

1)如果按孙膑的策略比赛一次,求田忌获胜的概率;

2)如果比赛约定,只能同等级马对战,每次比赛赌注1000,即胜利者赢得对方1000,每月比赛一次,求田忌一年赛马获利的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于,直线l与椭圆C交于两点,其中直线l不过原点.

1)求椭圆C的方程;

2)设直线的斜率分别为,其中.的面积为S.分别以为直径的圆的面积依次为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查学生喜欢应用统计课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:

喜欢统计课程

不喜欢统计课程

男生

20

5

女生

10

20

1判断是否有995%的把握认为喜欢应用统计课程与性别有关?

2用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率

临界值参考:

010

005

025

0010

0005

0001

2706

3841

5024

6635

7879

10828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2.

(Ⅰ)求甲、乙、丙三名同学都选高校的概率;

(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2.

(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;

(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案