精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点轴不垂直的直线交椭圆于两点.

(1)求椭圆的方程;

(2)当直线的斜率为1时,求的面积;

(3)在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.

【答案】(1);(2);(3)存在,的取值范围为.

【解析】

试题分析:(1)由短轴长为,由两个焦点和短轴的两个端点恰为一个正方形的顶点,由此求出,即可求出椭圆方程;(2)先写出直线的方程,将直线方程与椭圆方程联立,求出的坐标,从而求出,由点到直线的距离公式求出点到到直线的距离即可求三角形的面积;(3) 设在线段上存在点,使得以为邻边的平行四边形是菱形,设出直线方程,与椭圆方程联立,由韦达定理计算,即可求出的取值范围.

试题解析:(1)设椭圆方程为

根据题意得 所以

所以椭圆方程为

(2)根据题意得直线方程为

解方程组坐标为 计算

到直线的距离为 所以,

(3)假设在线段上存在点,使得以为邻边的平行四边形是菱形.因为直线与轴不垂直,所以设直线的方程为

坐标为

得,

计算得:,其中

由于以为邻边的平行四边形是菱形,所以

计算得 所以.

(可以设点,也可以设直线得到的函数关系式)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知abcABC中角ABC的对边,SABC的面积.若a2+c2=b2+ac

(I)求角B ; (II)b=2S=,判断三角形形状

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中的轨迹为,过点的直线所截得的线段的长为,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 恒过定点,圆经过点和点,且圆心在直线上.

(1)求定点的坐标;

(2)求圆的方程;

(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知c0,设命题p:函数为减函数.命题q:当时,函数fx)=x恒成立.如果“p∨q”为真命题,“p∧q”为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的有__________.(写出所有正确说法的序号)

①已知关于的不等式的角集为,则实数的取值范围是

②已知等比数列的前项和为,则也构成等比数列.

③已知函数(其中)在上单调递减,且关于的方程恰有两个不相等的实数解,则

④已知,且,则的最小值为

⑤在平面直角坐标系中, 为坐标原点, 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低硕族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

120

0.6

第二组

195

第三组

100

0.5

第四组

0.4

第五组

30

0.3

第六组

15

0.3

(1)补全频率分布直方图并求的值(直接写结果);

(2)从年龄段在低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设计一份学生食堂饭菜质量、饭菜价格、服务质量满意程度的调查问卷.

查看答案和解析>>

同步练习册答案