精英家教网 > 高中数学 > 题目详情
11.若α,β为锐角,cos(α+β)=-$\frac{5}{13}$,sinβ=$\frac{3}{5}$,则sin(α+2β)=(  )
A.$\frac{33}{65}$B.-$\frac{63}{65}$C.-$\frac{33}{65}$D.$\frac{63}{65}$

分析 由条件利用同角三角函数的基本关系,两角和的正弦函数公式,即可求得sin(α+2β)的值.

解答 解:∵cos(α+β)=-$\frac{5}{13}$,sinβ=$\frac{3}{5}$,α,β均为锐角,
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{12}{13}$,cosβ=$\sqrt{1-si{n}^{2}β}$=$\frac{4}{5}$.
∴sin(α+2β)=sin(α+β)cosβ+cos(α+β)sinβ=$\frac{12}{13}$×$\frac{4}{5}$+(-$\frac{5}{13}$)×$\frac{3}{5}$=$\frac{33}{65}$.
故选:A.

点评 本题主要考查同角三角函数的基本关系,两角和的正弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=x+sinx,则不等式$\frac{f(lnx)-f(ln\frac{1}{x})}{2}$<f(1)的解集是(0,e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,M,N分别为其左右顶点.过F2的直线l与椭圆相交于A,B两点.当直线l与x轴垂直时,四边形AMBN的面积等于2,且满足|$\overrightarrow{M{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{AB}$|+|$\overrightarrow{{F}_{2}N}$|.
(1)求此椭圆的方程;
(2)当直线l绕着焦点F2旋转不与x轴重合时,求$\overrightarrow{AM}$•$\overrightarrow{AN}$+$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)(x∈N)表示x除以2的余数,函数g(x)(x∈N)表示x除以3的余数,则对任意的x∈N,给出以下式子:①f(x)≠g(x);②f(2x)=0;③g(2x)=2g(x);④f(x)+f(x+3)=1.其中正确的式子编号是②④.(写出所有符合要求的式子编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点M,N,F分别为椭圆C的左顶点、上顶点、左焦点,若∠MFN=∠NMF+90°,则椭圆C的离心率是(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=$[{\frac{1}{2},2}]$,b=0.56,c=log0.56,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且经过点(-2,0).过点D(0,-2)的斜率为k的直线l与椭圆交于A,B两点,与x轴交于P点,点A关于x轴的对称点C,直线BC交x轴于点Q.
(Ⅰ)求k的取值范围;
(Ⅱ)试问:|OP|?|OQ|是否为定值?若是,求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=bsinx-ax2+2a-eb,g(x)=ex,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)当a=0时,讨论函数F(x)=f(x)g(x)的单调性;
(2)求证:对任意a∈[$\frac{1}{2}$,1],存在b∈(-∞,1],使得f(x)在区间[0,+∞)上恒有f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(-1,3),$\overrightarrow{b}$=(1,t),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则t=-3.

查看答案和解析>>

同步练习册答案