【题目】记为虚数集,设,则下列类比所得的结论正确的是__________.
①由,类比得
②由,类比得
③由,类比得
④由,类比得
【答案】③
【解析】分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对3个结论逐一进行分析,不难解答.
详解:A:由ab∈R,不能类比得xy∈I,如x=y=i,则xy=﹣1I,故①不正确;
B:由a2≥0,不能类比得x2≥0.如x=i,则x2<0,故②不正确;
C:由(a+b)2=a2+2ab+b2,可类比得(x+y)2=x2+2xy+y2.故③正确;
D:若x,y∈I,当x=1+i,y=﹣i时,x+y>0,但x,y 是两个虚数,不能比较大小.故④错误
故4个结论中,C是正确的.
故答案为:③.
科目:高中数学 来源: 题型:
【题目】已知.
(1)求函数的最小正周期和对称轴方程;
(2)若,求的值域.
【答案】(1)对称轴为,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.
(1)
令,则
的对称轴为,最小正周期;
(2)当时,,
因为在单调递增,在单调递减,
在取最大值,在取最小值,
所以,
所以.
【点睛】
本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.
【题型】解答题
【结束】
21
【题目】已知等比数列的前项和为,公比,,.
(1)求等比数列的通项公式;
(2)设,求的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,点M在线段PC上,且PM=2MC,N为AD的中点.
(1)求证:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱锥P﹣NBM的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA= ,cosC=
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
分组(岁) | 频数 |
合计 |
(1)求频数分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,从年龄在、内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.
(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;
(2)若直线l过点(0,2),求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于( )
A.2
B.1
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com