精英家教网 > 高中数学 > 题目详情
12.讨论函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≥1}\\{3-x}&{x<1}\end{array}\right.$在点x=1处的连续性,并画出它的图象.

分析 由题意可判断函数f(x)在点x=1处连续,分段作其图象即可.

解答 解:f(1)=2,
$\underset{lim}{x→{1}^{+}}$f(x)=$\underset{lim}{x→{1}^{+}}$(x+1)=2,
$\underset{lim}{x→{1}^{-}}$f(x)=$\underset{lim}{x→{1}^{+}}$(3-x)=2,
故函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≥1}\\{3-x}&{x<1}\end{array}\right.$在点x=1处连续,
作其图象如下,

点评 本题考查了函数的连续性的判断及分段函数的图象的作法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.一个有盖的正方体铸铁箱,每条外棱的长为26厘米,壁厚为0.15厘米,已知铸铁的比重为7.2克/立方厘米,求铁箱的重量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≥0}\\{{x}^{2}-4x,x<0}\end{array}\right.$,若f(2a+1)>f(3),则实数a的取值范围是(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-1)∪(-$\frac{1}{3}$,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式x2-2x-3<0的解集为(  )
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足$\frac{a_1}{9}+\frac{a_2}{7}+\frac{a_3}{5}+…+\frac{a_n}{11-2n}$=n
(1)求数列{an}的通项公式;   
(2)求数列{|an|}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示为$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示为$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),则λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈R+,函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]时,f(x)=(x-1)(x-2),则函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=4-x-a•21-x-3在x∈[-2,+∞)时有最小值是-4,求实数a的值.

查看答案和解析>>

同步练习册答案