【题目】设满足以下两个条件的有穷数列为阶“期待数列”:①;②.
(1)分别写出一个单调递增的3阶和4阶“期待数列”;
(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为,试证:.
【答案】(1)数列,0,为三阶期待数列,数列,,,为四阶期待数列;(2);(3)证明见解析.
【解析】
(1)数列,0,为三阶期待数列,数列,,,为四阶期待数列.
(2)设该2013阶“期待数列”的公差为,由于,可得,,对分类讨论,利用等差数列的通项公式即可得出.
(3)当时,显然成立;当时,根据条件①得:,即,再利用绝对值不等式的性质即可得出.
解:(1)数列,0,为三阶期待数列,
数列,,,为四阶期待数列.
(2)设该2013阶“期待数列”的公差为,
,,
,即,
,
当时,与期待数列的条件①②矛盾,
当时,据期待数列的条件①②可得,
,即,
,,
当时,同理可得,,.
(3)当时,显然成立;
当时,根据条件①得:,
即,
,
,2,,.
科目:高中数学 来源: 题型:
【题目】已知椭圆的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点,的面积为,椭圆的长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭园交于两个不同的点,若存在实数,使得,求的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ln(a x)+bx在点(1,f(1))处的切线是y=0;
(I)求函数f(x)的极值;
(II)当恒成立时,求实数m的取值范围(e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,平面平面,,,,为中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为为椭圆上一动点,当的面积最大时,其内切圆半径为,设过点的直线被椭圆截得线段,
当轴时,.
(1)求椭圆的标准方程;
(2)若点为椭圆的左顶点,是椭圆上异于左、右顶点的两点,设直线的斜率分别为,若,试问直线是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆长轴的一个端点是抛物线的焦点,且椭圆焦点与抛物线焦点的距离是1。
(1)求椭圆的标准方程;
(2)若是椭圆的左右端点,为原点,是椭圆上异于的任意一点,直线分别交轴于,问是否为定值,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com