精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和曲线的极坐标方程;

(2)若射线与曲线分别交于两点,求.

【答案】(1);(2)

【解析】试题分析:1)由sin2α+cos2α=1,能求出曲线C1的普通方程,由x=ρcosθ,y=ρsinθ,能求出曲线C2的极坐标方程;(2)依题意设A(),B(),将代入曲线C1的极坐标方程,求出ρ1=3,将(ρ0)代入曲线C2的极坐标方程求出,由此能求出|AB|

解析:

(Ⅰ)由.

所以曲线的普通方程为.

,代入,得到,化简得到曲线的极坐标方程为.

(Ⅱ)依题意可设,曲线的极坐标方程为.

代入的极坐标方程得,解得.

代入的极坐标方程得.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若处取到极小值,求的值及函数的单调区间;

(2)若当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的方程是,曲线的参数方程是为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线与曲线的极坐标方程;

(2)若射线与曲线交于点,与直线交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若曲线在点处的切线垂直于轴,求实数的值;

(2)当时,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),五边形中, .如图(2),将沿折到的位置,得到四棱锥.点为线段的中点,且平面

(1)求证:平面平面

(2)若直线所成角的正切值为,设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四棱锥中, 平面,底面是梯形, 的中点, 上一点,且).

(1)若时,求证: 平面

(2)若直线与平面所成角的正弦值为,求异面直线与直线所成角的余弦值.

查看答案和解析>>

同步练习册答案