精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

【答案】12100千件

【解析】

1)根据题意,分两种情况,分别求出函数解析式,即可求出结果;

2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.

解(1)因为每件商品售价为0.05万元,则千件商品销售额为万元,依题意得:

时,

时,

所以

2)当时,

此时,当时,取得最大值万元.

时,

此时,即时,取得最大值1050万元.

由于

答:当年产量为100千件时,该厂在这一商品生产中所获利润最大,

最大利润为1050万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于MN两点。

(1)写出直线l的普通方程和曲线C的直角坐标方程:

(2)若成等比数列,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不经过原点的直线在两坐标轴上的截距相等,且点在直线.

1)求直线的方程;

2)过点作直线,若直线轴围成的三角形的面积为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意给定的无理数及实数,证明:圆周上至多只有两个有理点(纵、横坐标均为有理数的点)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A10)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中αβ180°),如果两只蚂蚁都在第14秒时回到A点,并且在第2秒时均位于第二象限,求αβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:,且,则方程在区间上的所有实根之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为常数),曲线在与轴的交点A处的切线与轴平行.

(1)的值及函数的单调区间;

(2)若存在不相等的实数使成立试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.

(1)求异面直线AD1EC所成角的大小;

(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.

查看答案和解析>>

同步练习册答案