精英家教网 > 高中数学 > 题目详情
17.已知两个等差数列{an},{bn}的前n和分别为Sn,Tn,且满足$\frac{S_9}{T_7}=\frac{5}{3}$,求$\frac{a_5}{b_4}$=$\frac{35}{27}$.

分析 利用等差数列的性质可得:$\frac{a_5}{b_4}$=$\frac{\frac{{a}_{1}+{a}_{9}}{2}}{\frac{{b}_{1}+{b}_{7}}{2}}$=$\frac{\frac{{S}_{9}}{9}}{\frac{{T}_{7}}{7}}$,即可得出.

解答 解:∵两个等差数列{an},{bn}的前n和分别为Sn,Tn,且满足$\frac{S_9}{T_7}=\frac{5}{3}$,
∴$\frac{a_5}{b_4}$=$\frac{\frac{{a}_{1}+{a}_{9}}{2}}{\frac{{b}_{1}+{b}_{7}}{2}}$=$\frac{\frac{{S}_{9}}{9}}{\frac{{T}_{7}}{7}}$=$\frac{7}{9}×\frac{5}{3}$=$\frac{35}{27}$,
故答案为:$\frac{35}{27}$.

点评 本题考查了等差数列的通项公式及其前n项和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.用适当的集合符号填空.
(1)(1,2)∈{(x,y)|y=x+1};
(2)2$+\sqrt{5}$∉{x|x≤2$+\sqrt{3}$};
(3){-1,1}?{x|x3-x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知集合P={x|x2+x-6=0},S={x|ax+1=0},且S⊆P,求由实数a的所有可取值组成的集合;
(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B⊆A,求由实数m的所有可取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={a,b},B={0,1,2},从集合A到B的映射f:A→B满足f(a)+f(b)=2,则这样的映射f:A→B的个数是(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知下列命题:
①有向线段就是向量,向量就是有向线段;
②如果向量$\vec a$与向量$\vec b$平行,则$\vec a$与$\vec b$的方向相同或相反;
③如果向量$\overrightarrow{AB}$与向量$\overrightarrow{CD}$共线,则A,B,C,D四点共线;
④如果$\overrightarrow a$∥$\vec b$,$\vec b$∥$\overrightarrow c$,那么$\overrightarrow a$∥$\overrightarrow c$;
⑤两个向量不能比较大小,但是他们的模能比较大小.
其中正确的命题为(  )
A.①②④⑤B.②④⑤C.D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前k项和为28,前2k项和为76,则它的前3k项和为(  )
A.104B.124C.134D.144

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计算:($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+lg$\frac{3}{7}$+lg70+$\sqrt{(lg3)^{2}-lg9+1}$=$\frac{43}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,则数列{an}的通项公式为an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知c<0,下列不等式中成立的一个是(  )
A.c>($\frac{1}{2}$)cB.c>2cC.2c<($\frac{1}{2}$)cD.2c>($\frac{1}{2}$)c

查看答案和解析>>

同步练习册答案