【题目】已知,命题:对,不等式恒成立;命题,使得成立.
(1)若为真命题,求的取值范围;
(2)当时,若假,为真,求的取值范围.
【答案】(1) 1≤m≤2.(2) (﹣∞,1)∪(1,2].
【解析】
试题分析:(1)(2x-2)min≥m2-3m.即m2-3m≤-2,解得1≤m≤2;(2)p,q中一个是真命题,一个是假命题,解得m的取值范围为(-∞,1)∪ (1,2].
试题解析:
(1)∵对任意x∈[0,1],不等式2x-2≥m2-3m恒成立,
∴(2x-2)min≥m2-3m.即m2-3m≤-2.
解得1≤m≤2.
因此,若p为真命题时,m的取值范围是[1,2].
(2)∵a=1,且存在x∈[-1,1],使得m≤ax成立,
∴m≤x,命题q为真时,m≤1.
∵p且q为假,p或q为真,
∴p,q中一个是真命题,一个是假命题.
当p真q假时,则解得1<m≤2;
当p假q真时,即m<1.
综上所述,m的取值范围为(-∞,1)∪(1,2].
科目:高中数学 来源: 题型:
【题目】甲题型:给出如图数阵表格形式,表格内是按某种规律排列成的有限个正整数.
(1)记第一行的自左至右构成数列,是的前项和,试求;
(2)记为第列第行交点的数字,观察数阵请写出表达式,若,试求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点且与轴相切,点关于圆心的对称点为,动点的轨迹记为.
(1)求的方程;
(2)设直线:与曲线交于点、;直线:与交于点,,其中,以、为直径的圆、(、为圆心)的公共弦所在直线记为,求到直线距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有A、B两种型号台灯,若购买2台A型台灯和6台B型台灯共需610元,若购买6台A型台灯和2台B型台灯共需470元.
(1)求A、B两种型号台灯每台分别多少元?
(2)采购员小红想采购A、B两种型号台灯共30台,且总费用不超过2200元,则最多能采购B型台灯多少台?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①函数是奇函数;
②将函数的图像向左平移个单位长度,得到函数的图像;
③若是第一象限角且,则;
④是函数的图像的一条对称轴;
⑤函数的图像关于点中心对称。
其中,正确的命题序号是______________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com