精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.

【答案】解:(Ⅰ)因为抛物线焦点为(1,0),所以椭圆的焦点坐标为F2(1,0),F1(﹣1,0),

又因为M(1, )在椭圆上,

所以2a=|MF1|+|MF2|= + =4,

即a=2,又因为c=1 所以b2=a2﹣c2=3,

所以椭圆的方程是 + =1;

(Ⅱ)若直线PA,PB关于x轴对称,则kPA+kPB=0,

设A(x1,kx1+1),B(x2,kx2+1),

联立 ,消去y得到(3+4k2)x2+8kx﹣8=0,

即﹣16k﹣32k2﹣8k+24+32k2=0,

∴k=1


【解析】(Ⅰ)求出抛物线的焦点,可得椭圆的焦点,由椭圆的定义,运用两点的距离公式可得2a=4,即a=2,再由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)若直线PA,PB关于x轴对称,则kPA+kPB=0,设A(x1,kx1+1),B(x2,kx2+1),运用直线的斜率公式,联立直线方程和椭圆方程,运用韦达定理,化简整理可得k的方程,解方程即可得到k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A、B、C所对的边分别为a、b、c,且tanA﹣tanB= (1+tanAtanB). (Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知f( +1)=x+2 ,求f(x)的解析式;
(2)已知f(x)是一次函数,且满足3f(x+1)﹣2f(x﹣1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的方程x3﹣ax+2=0有三个不同实数解,则实数a的取值范围是(
A.(2,+∞)
B.(3,+∞)
C.(0,3 )
D.(﹣∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中中点.

1)求证 平面

2)求异面直线所成角的余弦值;

3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,该程序运行后输出的k的值是(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y=
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的定义域为,且存在非零常数,对任意 恒成立,则称为线周期函数, 的线周期.

(Ⅰ)下列函数①,②,③(其中表示不超过的最大整数),是线周期函数的是(直接填写序号);

(Ⅱ)若为线周期函数,其线周期为,求证:函数为周期函数;

(Ⅲ)若为线周期函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与直线,其中为常数.

1,求的值;

2若点上,直线点,且在两坐标轴上的截距之和为0,求直线的方程.

查看答案和解析>>

同步练习册答案