【题目】已知双曲线C和椭圆有公共的焦点,且离心率为.
(1)求双曲线C的方程.
(2)经过点M(2,1)作直线l交双曲线C于A,B两点,且M为AB的中点,求直线l的方程并求弦长.
【答案】(1)x21 (2)y=4x﹣7,弦长
【解析】
(1)求出双曲线的焦点坐标,结合离心率,联立求解a,b,c得到双曲线的方程;
(2)设A(x1,y1),B(x2,y2)代入椭圆方程,用点差法求出直线斜率,弦长公式求弦长即可.
(1)由题意得椭圆的焦点为F1(,0),F2(,0),
设双曲线方程为1,a>0,b>0,
则c2=a2+b2=3,
∵e
∴ca,
解得a2=1,b2=2,
∴双曲线方程为x21.
(2)把A(x1,y1),B(x2,y2)分别代入双曲线x12y12=1,x22y22=1,
两式相减,得(x1﹣x2)(x1+x2)(y1﹣y2)(y1+y2)=0,
把x1+x2=4,y1+y2=2代入,得4(x1﹣x2)﹣(y1﹣y2)=0,
∴kAB4,
∴直线L的方程为y=4x﹣7,
把y=4x﹣7代入x21,
消去y得14x2﹣56x+51=0,
∴x1+x2=4,x1x2= ,k=4,
∴|AB|.
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)设函数的导函数是,若不等式对于任意的实数恒成立,求实数的取值范围;
(Ⅲ)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为(为参数).
(1)求的直角坐标方程;
(2)与交于不同的四点,这四点在上排列顺次为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函数f(x)的单调递增区间;
(2)若x∈[0,],求函数f(x)的最值及相应x的取值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业准备投入适当的广告费对甲产品进行促销宣传,在一年内预计销量(万件)与广告费(万元)之间的函数关系为,已知生产此产品的年固定投入为万元,每生产1万件此产品仍需要再投入30万元,且能全部销售完,若每件甲产品销售价格(元)定为:“平均每件甲产品生产成本的150%”与“年平均每件产品所占广告费的50%”之和,则当广告费为1万元时,该企业甲产品的年利润比不投入广告费时的年利润增加了__________万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(MD),有x+l∈D,且f(x+l)f(x),则称f(x)为M上的l高调函数.现给出下列命题:①函数f(x)=2﹣x为R上的1高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,那么实数m的取值范围是[2,+∞);④函数f(x)=lg(|x﹣2|+1)为[1,+∞)上的2高调函数.其中真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,若不等式的解集为(1,4),且方程f(x)=x有两个相等的实数根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求实数m的取值范围;
(3)解不等式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com