【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点为极点, 轴的正半轴为极轴建立坐标系,已知点的直角坐标为,若直线的极坐标方程为.曲线的参数方程是(为参数).
(1)求直线和曲线的普通方程;
(2)设直线和曲线交于两点,求.
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为
(1)求直线的斜率和曲线C的直角坐标方程;
(2)若直线与曲线C交于A、B 两点,设点,求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有五辆汽车,其中两辆汽车的车牌尾号均为1. 两辆汽车的车牌尾号均为2, 车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车, 三辆汽车每天出车的概率均为, 两辆汽车每天出车的概率均为,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求该公司在星期一至少有2辆汽车出国的概率;
(2)设表示该公司在星期二和星期三两天出车的车辆数之和,求的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有( )
A. 20 B. 21 C. 22 D. 24
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在4局以内(含4局)赢得比赛的概率;
(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com