精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立坐标系,已知点的直角坐标为,若直线的极坐标方程为.曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求.

【答案】(1);(2)

【解析】试题分析:直线的极坐标方程化为,由,能求出直线的普通方程;曲线的参数方程消去参数能求出曲线的普通方程; (2)点的直角坐标为,点在直线上,求出直线的参数方程,得到,由此利用韦达定理能求出的值.

试题解析:(1)因为,所以

,得,因为,消去

所以直线和曲线的普通方程分别为

(2)点的直角坐标为,点在直线上,设直线的参数方程: 为参数),对应的参数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为,点ABC为该抛物线上不同的三点,且满足.

(1)求

(2)若直线轴于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为

(1)求直线的斜率和曲线C的直角坐标方程;

(2)若直线与曲线C交于A、B 两点,设点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}{bn}中,a12b14,且anbnan1成等差数列,bnan1bn1成等比数列{nN}

a2a3a4b2b3b4,由此猜测{an}{bn}的通项公式,并证明你的结论;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有五辆汽车,其中两辆汽车的车牌尾号均为1. 两辆汽车的车牌尾号均为2, 车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车, 三辆汽车每天出车的概率均为 两辆汽车每天出车的概率均为,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:

车牌尾号

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求该公司在星期一至少有2辆汽车出国的概率;

(2)设表示该公司在星期二和星期三两天出车的车辆数之和,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在哈尔滨的中央大街的步行街同侧有6块广告牌,牌的底色可选用红、蓝两种颜色,若要求相邻两块牌的底色不都为蓝色,则不同的配色方案共有( )

A. 20 B. 21 C. 22 D. 24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为各局比赛结果相互独立.

(1)求甲在4局以内(4)赢得比赛的概率;

(2)X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期

昼夜温差

就诊人数(个)

16

该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的2组数据恰好是相邻两个月的概率;

(2)若选取的是月与月的两组数据,请根据月份的数据,求出 关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?

参考公式:

img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/15/5e628df7/SYS201712291544309711452715_ST/SYS201712291544309711452715_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

查看答案和解析>>

同步练习册答案