精英家教网 > 高中数学 > 题目详情

【题目】已知函数 )为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

【答案】(1) ;(2) .

【解析】试题分析:(1)由题意,化简得到根据相邻量对称轴间的距离求得函数的最小正周期,进而得到的值,根据奇函数,求解,得到函数的解析式,进而求解函数的单调区间即可;

(2)根据三角函数的图象变换得到的解析式,根据题意求解

的取值范围,即可求解函数的值域.

试题解析:

(1)由题意可得:

因为相邻量对称轴间的距离为,所以

因为函数为奇函数,所以

因为,所以,函数

要使单调减,需满足

所以函数的减区间为

(2)由题意可得:

即函数的值域为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:恒等于常数,则称具有局部等差数列.

1)若具有局部等差数列,且,求

2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,判断是否具有局部等差数列,并说明理由;

3)设既具有局部等差数列,又具有局部等差数列,求证具有局部等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 “中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家。”这个论断被各种媒体反复引用。出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国传统文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备购进一定量的书籍丰富小区图书站,由于年龄段不同需看不同类型的书籍,为了合理配备资源,对小区内看书人员进行了年龄的调查,随机抽取了一天中名读书者进行调查,将他们的年龄分成6段:后得到如图所示的频率分布直方图.问:

(Ⅰ)求40名读书者中年龄分布在的人数;

(Ⅱ)求40名读书者年龄的众数和中位数的估计值;(用各组区间中点值作代表)

(Ⅲ)若从年龄在的读书者中任取2名,求这两名读书者中年龄在恰有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,试确定函数的单调区间;

(2)若,且对于任意 恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数.

(1)求的值;

(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,将函数图象向下平移个单位得到的图象,则

)求函数的最小正周期单调递增区间;

)求在区间上的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,求 .

查看答案和解析>>

同步练习册答案