精英家教网 > 高中数学 > 题目详情
17.$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1-i}$)2014=0.

分析 直接利用复数的除法以及乘方运算法则化简求解即可.

解答 解:$\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1-i}$)2014=$\frac{(-2\sqrt{3}+i)(1-2\sqrt{3}i)}{(1+2\sqrt{3}i)(1-2\sqrt{3}i)}$+$[(\frac{\sqrt{2}}{1-i})^{2}]^{1007}$
=$\frac{-2\sqrt{3}+i+12i+2\sqrt{3}}{13}$+$(-{\frac{1}{i})}^{1007}$
=i+$\frac{1}{i}$
=i-i
=0.
故答案为:0.

点评 本题考查复数的代数形式的混合运算,复数的幂运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设数列{an}的所有项都是不等于1的正数,{an}的前n项和为Sn,已知点${P_n}({a_n},{S_n}),n∈{N^*}$在直线y=kx+b上(其中常数k≠0,且k≠1)数列,又${b_n}={log_{\frac{1}{2}}}{a_n}$.
(1)求证数列{an}是等比数列;
(2)如果bn=3-n,求实数k、b的值;
(3)若果存在t,s∈N*,s≠t使得点(t,bs)和(s,bt)都在直线在y=2x+1上,是否存在自然数M,当n>M(n∈N*)时,an>1恒成立?若存在,求出M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把5个桃子,2个香蕉分给3只小猴子,每只小猴子至少分到2个水果,则两个香焦恰好分给了同一个小猴子的概率为(  )
A.$\frac{2}{21}$B.$\frac{4}{21}$C.$\frac{5}{21}$D.$\frac{11}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知锐角α,β满足条件cos2α-cos2β=cos2(α-β)-$\frac{3}{2}$,求α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若锐角α满足0°<α<45°,且sin2α=$\frac{\sqrt{3}}{2}$,tanα=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点E.F分别在边AB,AC上,且AE=2EB,AF=$\frac{1}{2}$FC,BF,CE交于点P,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AP}$;
(2)求$\frac{CP}{PE}$的值;
(3)若S△ABC=1,求S△ABP

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求(-$\frac{1}{2}$)-2+125${\;}^{\frac{2}{3}}$+2lg$\frac{1}{2}$-lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式|x+2|+|x-2|<8的解集为{x|-4<x<4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是空间中不共面的三个向量,且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{c}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$+$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$+3$\overrightarrow{{e}_{3}}$,$\overrightarrow{d}$=$α\overrightarrow{a}$+$β\overrightarrow{b}$+$γ\overrightarrow{c}$,则α+β+γ等于1.

查看答案和解析>>

同步练习册答案