精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);

(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;

(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

【答案】(1)递增区间为; (2)4; (3).

【解析】

(Ⅰ)当时,,由此能求出的单调递增区间;

(Ⅱ)由,得当时,y=fx)的图象与直线y=4没有交点;当a=4a=0时,y=fx)的图象与直线y=4只有一个交点;当时,;当时,由,得,由,得,由此能求出的最大值;

(Ⅲ)要使关于x的方程有两个不同的实数根,则,且,根据,且进行分类讨论能求出的取值范围.

(Ⅰ)fx)的单调递增区间为.

(Ⅱ)因为x>0,所以(i)当a>4时,yfx)的图像与直线y=4没有交点;

ii)当a=4或a=0时,yfx)的图像与直线y=4只有一个交点;

iii)当0<a<4时,0<ga)<4;

(iv)当a<0时,由

,

解得

解得.

所以.

的最大值是4.

(Ⅲ)要使关于x的方程 (*)

有两个不同的实数根,则.

i)当a>1时,由(*)得

所以,不符合题意;

ii)当0<a<4时,由(*)得,其对称轴,不符合题意;

iii)当a<0,且a-1时,由(*)得

又因,所以a<-1.

所以函数是增函数,

要使直线与函数图像在(1,2)内有两个交点,

只需

解得.

综上所述,a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数既是奇函数,又在上单调递增的是  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形中,EA的中点(如图1),将沿CD折起到图2的位置,得到四棱锥是

1)求证:平面PDA

2)若PD与平面ABCD所成的角为.且为锐角三角形,求平面PAD和平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某综艺节目为比较甲、乙两名选手的各项能力(指标值满分为5分,分值高者为优),分别绘制了如图所示的六维能力雷达图,图中点A表示甲的创造力指标值为4,点B表示乙的空间能力指标值为3,则下列叙述错误的是(

A.甲的六大能力中推理能力最差B.甲的创造力优于观察能力

C.乙的计算能力优于甲的计算能力D.乙的六大能力整体水平低于甲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:

不常喝

2

不肥胖

18

30

已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为

(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?

独立性检验临界值表:

P(K2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若方程有两个实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市10000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩(满分是184分)的频率分布直方图.

市教育局规定每个学生需要缴考试费100元.某企业根据这100000名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人元的交通和餐补费.

(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩的中位数,并对甲、乙的成绩作出客观的评价;

(2)令表示每个学生的交费或获得交通和餐补费的代数和,把的函数来表示,并根据频率分布直方图估计的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆()的离心率为,圆轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为

(Ⅰ)求椭圆的方程;

(Ⅱ)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数,在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线的极坐标方程为

求曲线的极坐标方程和曲线的直角坐标方程;

若射线l与曲线的交点分别为AB异于原点,求的取值范围.

查看答案和解析>>

同步练习册答案