精英家教网 > 高中数学 > 题目详情

【题目】如图,已知=(2,1),=(1,7),=(5,1),设Z是直线OP上的一动点.

(1)求使取最小值时的

(2)(1)中求出的点Z,求cosAZB的值.

【答案】(1)最小值-8,= (4,2)(2)

【解析】分析:(1)运用向量共线的坐标表示,求得向量ZA,ZB的坐标,由数量积的标准表示,结合二次函数的最值求法,可得最小值,及向量OZ;(2)求得t=2的向量ZA,ZB,以及模的大小,由向量的夹角公式,计算即可得到.

详解:(1)Z是直线OP上的一点,∴.

设实数t,使tt(2,1)=(2tt),

=(1,7)-(2tt)=(1-2t,7-t),

=(5,1)-(2tt)=(5-2t,1-t).

·=(1-2t)(5-2t)+(7-t)(1-t)=5t2-20t+12=5(t-2)2-8.

t=2时,·有最小值-8,此时=(2tt)=(4,2).

(2)t=2时,=(1-2t,7-t)=(-3,5),

||==(5-2t,1-t)=(1,-1),||=.

cos∠AZB=-=-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对任意m[-1,1]函数f(x)x2(m4)x42m的值恒大于零x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是平面,是直线,给出下列命题:

,则

,则

如果是异面直线,则相交;

,且,则,且

其中正确确命题的序号是_____(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足.

(1)求数列的通项公式;

(2)若,数列的前项和为,是否存在正整数,使? 若存在,求出符合条件的所有的值构成的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.

写出y关于r的函数表达式,并求该函数的定义域;

求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆, 是圆上任意一点,线段的垂直平分线和半径相交于点

(Ⅰ)当点在圆上运动时,求点的轨迹方程;

(Ⅱ)直线与点的轨迹交于不同两点,且(其中 O 为坐标

原点),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 为棱中点.

I)求证: 平面

II)求证: 平面

III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求过点,斜率是直线的斜率的的直线方程;

(2)求经过点,且在轴上的截距等于在轴上截距的2倍的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】这六个数字.

(1)能组成多少个无重复数字的四位偶数?

(2)能组成多少个无重复数字且为的倍数的五位数?

(3)能组成多少个无重复数字且比大的四位数?

查看答案和解析>>

同步练习册答案