精英家教网 > 高中数学 > 题目详情

【题目】某班数学兴趣小组对函数的图象和性质将进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是除外的全体实数,的几组对应值列表如下:

其中,_________

2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数性质;

4)进一步探究函数图象发现:

①函数图象与轴交点情况是________,所以对应方程的实数根的情况是________

②方程_______个实数根;

③关于的方程个实数根,的取值范围是________

【答案】1;(2)图象见解析;(3)函数的单调递减区间为(答案不唯一);(4)①无交点,无实数根;②;③

【解析】

1)把代入求得的值,即可得出的值;

2)根据表格提供的数据描点,连线即可得到函数的另一部分图象;

3)观察图象,总结出函数的性质即可;

4)①由于的值不能为,故函数值也不能为,从而可得出函数图象与轴无交点,因而无实数根;

②方程的实数根的个数可以看作函数与直线的交点个数,画出图象即可得到结论;

③由②的图象即可得到结果.

1)把代入得,,所以,

2)如图所示:

3)观察图象可知,函数的单调递减区间为(答案不唯一);

4)①,所以,函数的图象与轴无交点,则方程无实数根;

②求方程的根的个数,可以看成函数与直线的交点个数,如图,

函数与直线有两个交点,故方程个实数根,

③由②的图象可以得出,关于的方程个实数根,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD为平行四边形,PA⊥底面ABCD,

(1)求证:平面PCA⊥平面PCD;

(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线,直线关于直线对称的直线为,直线与曲线分别交于点,记直线的斜率为

(Ⅰ)求证:

(Ⅱ)当变化时,试问直线是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于 两点.

(1)求圆的直角坐标方程及弦的长;

(2)动点在圆上(不与 重合),试求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探究函数的图象与性质.

1)下表是yx的几组对应值.

其中m的值为_______________

2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;

3)结合函数的图象,写出该函数的一条性质:_________

4)若关于x的方程2个实数根,则t的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地有南北街道5条,东西街道5条,现在甲、乙、丙3名邮递员从该地西南角的邮局出发,送信到东北角的地,要求所走路程最短,设图中点是交叉路口,且路段由于修路不能通行.

(1)求甲从共有多少种走法?(用数字作答

(2)求甲经过点的概率;

(3)设3名邮递员恰有名邮递员经过点,求随机变量的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形是由正n+2边形扩展而来 ,则第n+1个图形的顶点个数是 (  )

(1) (2)(3) (4)

A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:

月份

1

2

3

4

5

销售量 (万件)

3

6

4

7

8

利润 (万元)

19

34

26

41

46

1)从这五个月的利润中任选2分别记为 求事件 均不小于30”的概率

2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程

3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想参考公式:

查看答案和解析>>

同步练习册答案