精英家教网 > 高中数学 > 题目详情
19.若存在两个正实数x,y,使得等式2x+a(y-2ex)(lny-lnx)=0成立,则实数a的取值范围为(  )
A.$[{-\frac{1}{2},\frac{1}{e}}]$B.$({0,\frac{2}{e}}]$C.$({-∞,0})∪[{\frac{2}{e},+∞})$D.$({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$

分析 根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.

解答 解:由2x+a(y-2ex)(lny-lnx)=0得2x+a(y-2ex)ln$\frac{y}{x}$=0,
即2+a($\frac{y}{x}$-2e)ln$\frac{y}{x}$=0,
即设t=$\frac{y}{x}$,则t>0,
则条件等价为2+a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{2}{a}$有解,
设g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$为增函数,
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴当t>e时,g′(t)>0,
当0<t<e时,g′(t)<0,
即当t=e时,函数g(t)取得极小值,为g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{2}{a}$有解,
则-$\frac{2}{a}$≥-e,即$\frac{2}{a}$≤e,
则a<0或a≥$\frac{2}{e}$,
故选:C

点评 本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{{-{3^x}+a}}{{{3^{x+1}}+b}}$.
(1)当a=b=1时,求满足f(x)=3x的x的取值;
(2)若函数f(x)是定义在R上的奇函数存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}中,a2=3,a4=7,若bn=a2n
(1)求bn
(2)求$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin30°+tan240°的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(4,8)且被圆x2+y2=25截得的弦长为6的直线方程是(  )
A.3x-4y+20=0B.3x-4y+20=0或x=4C.4x-3y+8=0D.4x-3y+8=0或x=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关系中正确的是(  )
A.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$B.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$
C.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$D.2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=x(3-2x)($0<x<\frac{3}{2}$)的最大值是(  )
A.$\frac{9}{8}$B.$\frac{9}{4}$C.$\frac{3}{2}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C的对边分别为a,b,c,A为钝角,且b=atanB.
(1)证明:$A-B=\frac{π}{2}$;
(2)求sinB+2sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图:若0<a<1,函数y=ax与y=x+a的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案