【题目】某城市的甲区、乙区分别对6个企业进行评估,综合得分情况如茎叶图所示.
(1)根据茎叶图,分别求甲、乙两区引进企业得分的平均值;
(2)规定85分以上(含85分)为优秀企业,若从甲、乙两个区准备引进的优秀企业中各随机选取一个,求这两个企业得分的差的绝对值不超过5分的概率.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式。孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数.在不超过30的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形为梯形, ,且, 是边长为2的正三角形,顶点在上的射影为点,且, , .
(1)证明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:
(1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得,利用该正态分布,求:
(i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?
附参考数据:,若随机变量X服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在椭圆上,为右焦点,轴,为椭圆上的四个动点,且,交于原点.
(1)判断直线与椭圆的位置关系;
(2设,满足,判断的值是否为定值,若是,请求出此定值,并求出四边形面积的最大值,否则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com