精英家教网 > 高中数学 > 题目详情

已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:数学公式
(Ⅱ)若c=ab,求c的最大值.

解:(Ⅰ)由柯西不等式得
代入已知a+b+c=3,


当且仅当=b=c=1,取等号.(3分)
(Ⅱ)由

若c=ab,则
所以
即c≤1,当且仅当a=b=1时,
∴c有最大值1.(7分).
分析:(I)利用柯西不等式得(a2+b2+c2)(m2+n2+p2)≥(am+bn+cp)2,代入已知a+b+c=3即得;
(Ⅱ)由,得,若c=ab,由(I)得,从而得出c≤1即得.
点评:本题主要考查了一般形式的柯西不等式.证明不等式时,关键是如何凑成能利用一般形式的柯西不等式的形式,注意重要不等式中等号成立的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正实数a,b,c成等差数列,且a+b+c=15.
(I)求b的值;
(II)若a+1,b+1,c+4成等比数列;
(i)求a,c的值;
(ii)若a,b,c为等差数列{an}的前三项,求数列{anxn-1}(x≠0)的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(2)已知正实数a、b、c满足a2+4b2+c2=3.
(I)求a+2b+c的最大值;
(II)若不等式|x-5|-|x-1|≥a+2b+c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数a,b,c成等比数列,求证:a2+b2+c2>(a-b+c)2

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题部分
(1)(选修4-4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线L:ρsin2θ=2acosθ(a>0)外的一点A(2
5
,π+θ)
(其中tanθ=2,θ为锐角)作平行于θ=
π
4
(ρ∈R)
的直线l与曲线分别交于B,C.
(Ⅰ) 写出曲线L和直线l的普通方程(以极点为原点,极轴为x轴的正半轴建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比数列,求a的值.
(2)(选修4-5 不等式证明选讲)(本小题满分7分)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

同步练习册答案
关 闭