精英家教网 > 高中数学 > 题目详情
在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC
(1)若DBC的中点,求证: ADCC1
(2)过侧面BB1C1C的对角线BC1的平面交侧棱AA1M,若AM=MA1,求证: 截面MBC1⊥侧面BB1C1C
证明: (1)  ∵AB=ACDBC的中点,
ADBC
∵底面ABC⊥平面BB1C1C
AD⊥侧面BB1C1C
ADCC1
(2) 延长B1A1BM交于N,连结C1N
AM=MA1
NA1=A1B1
A1B1=A1C1
A1C1=A1N=A1B1,  
C1NC1B1
∵底面NB1C1⊥侧面BB1C1C
C1N⊥侧面BB1C1C
∴截面C1NB⊥侧面BB1C1C
∴截面MBC1⊥侧面BB1C1C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.
(Ⅰ)若D是BC的中点,求证:AD⊥CC1
(Ⅱ)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;
(Ⅲ) AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.D为BC的中点,M为AA1的中点.
(1)求证:AD∥平面MB1C;
(2)求证:平面MB1C⊥侧面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.
(1)若D是BC的中点,求证:AD⊥CC1
(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在斜三棱柱A1B1C1ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.

(1)若DBC的中点,求证:ADCC1;

(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.

(3)AM=MA1是截面MBC1⊥侧面BB1C1C的充要条件吗?请你叙述判断理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱A1B1C1ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.

(1)若DBC的中点,求证:ADCC1

(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C

(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.

查看答案和解析>>

同步练习册答案