精英家教网 > 高中数学 > 题目详情

【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )

A. B. C. D.

【答案】B

【解析】

先利用等边三角形中心的性质,结合勾股定理计算得球的半径,过的最大截面是经过球心的截面,可由球的半径计算得出.最小的截面是和垂直的截面,先计算得的长度,利用勾股定理计算得这个截面圆的半径,由此计算得最小截面的面积.

画出图象如下图所示,其中是球心,是等边三角形的中心.根据等边三角形中心的性质有,设球的半径为,在三角形中,由勾股定理得,即,解得故最大的截面面积为.在三角形中,,由余弦定理得.在三角形中,,且垂直的截面圆的半径,故最小的截面面积为.综上所述,本小题选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在上的函数,满足,且对任意实数),恒有成立.

⑴试写 出一组满足条件的具体的,使为增函数,为减函数,但为增函数.

⑵判断下列两个命题的真假,并说明理由.

命题1):若为增函数,则为增函数;

命题2):若为增函数,则为增函数.

⑶已知,写出一组满足条件的具体的,且为非常值函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调递增区间;

(2)证明:当时,有两个零点;

(3)若,函数处取得最小值,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中表示不超过的最大整数,下列关于说法正确的有:______

的值域为[-1,1]

为奇函数

为周期函数,且最小正周期T=4

在[0,2)上为单调增函数

的图像有且仅有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三角形的边长为,将它沿高翻折,使点与点间的距离为,此时四面体外接球表面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,四边形为矩形,且平面与平面互相垂直.若多面体的体积为,则该多面体外接球表面积的最小值为(

A.B.C.D.

查看答案和解析>>

同步练习册答案