【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】设定义在上的函数、和,满足,且对任意实数、(),恒有成立.
⑴试写 出一组满足条件的具体的和,使为增函数,为减函数,但为增函数.
⑵判断下列两个命题的真假,并说明理由.
命题1):若为增函数,则为增函数;
命题2):若为增函数,则为增函数.
⑶已知,写出一组满足条件的具体的和,且为非常值函数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log4(4x+1)+kx与g(x)=log4(a2x﹣a),其中f(x)是偶函数.
(1)求实数k的值;
(2)求函数g(x)的定义域;
(3)若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.
(1)求侧面与底面所成的二面角的大小;
(2)若是的中点,求异面直线与所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中表示不超过的最大整数,下列关于说法正确的有:______.
①的值域为[-1,1]
②为奇函数
③为周期函数,且最小正周期T=4
④在[0,2)上为单调增函数
⑤与的图像有且仅有两个公共点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com