16£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a1=2£¬ÆäÇ°nºÍΪSn£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒ${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+¡­+{a_n}{b_n}=£¨n-1£©•{2^{n+2}}+4$¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚp£¬q¡ÊN*£¬Ê¹µÃ$2{£¨{a_p}£©^5}-{b_q}=2016$³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄp£¬q£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©Í¨¹ýÉèÊýÁÐ{an}µÄ¹«²îΪd¡¢ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬Áîn=1¡¢2¡¢3¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý¼ÙÉè´æÔÚp¡¢q¡ÊN*Âú×ãÌõ¼þ£¬ÀûÓã¨1£©´úÈë¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©·¨1£ºÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
ÒòΪ${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+¡­+{a_n}{b_n}=£¨n-1£©•{2^{n+2}}+4£¨n¡Ê{N^*}£©$£¬
Áîn=1£¬2£¬3·Ö±ðµÃa1b1=4£¬a1b1+a2b2=20£¬a1b1+a2b2+a3b3=68£¬
ÓÖa1=2£¬
ËùÒÔ$\left\{{\begin{array}{l}{{a_1}=2£¬{b_1}=2}\\{{a_2}{b_2}=16}\\{{a_3}{b_3}=48}\end{array}}\right.$£¬¼´$\left\{{\begin{array}{l}{£¨2+d£©£¨2q£©=16}\\{£¨2+2d£©£¨2{q^2}£©=48}\end{array}}\right.⇒3{d^2}-4d-4=0$£¬
µÃ$\left\{{\begin{array}{l}{{d_1}=-\frac{2}{3}}\\{{q_1}=6}\end{array}}\right.$»ò$\left\{{\begin{array}{l}{{d_2}=2}\\{{q_2}=2}\end{array}}\right.$£¬
¾­¼ìÑéd=2£¬q=2·ûºÏÌâÒ⣬$d=-\frac{2}{3}£¬q=6$²»ºÏÌâÒ⣬ÉáÈ¥£¬
ËùÒÔ${a_n}=2n£¬{b_n}={2^n}$£»
·¨2£ºÒòΪ${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+¡­+{a_n}{b_n}=£¨n-1£©•{2^{n+2}}+4$¢Ù
¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬
Ôò${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+¡­+{a_{n-1}}{b_{n-1}}=£¨n-2£©•{2^{n+1}}+4$£¨n¡Ý2£©¢Ú
¢Ù-¢ÚµÃ${a_n}{b_n}=n•{2^{n+1}}£¨n¡Ý2£©$£¬
ÓÖa1b1=4£¬Ò²·ûºÏÉÏʽ£¬Ëù
ÒÔ${a_n}{b_n}=n•{2^{n+1}}£¨n¡Ê{N^*}£©$£¬
ÓÉÓÚ{an}ΪµÈ²îÊýÁУ¬Áîan=kn+b£¬Ôò${b_n}=\frac{{n•{2^{n+1}}}}{kn+b}$£¬
Òò{bn}ΪµÈ±ÈÊýÁУ¬Ôò$\frac{b_n}{{{b_{n-1}}}}=\frac{2n[k£¨n-1£©+b]}{£¨n-1£©£¨kn+b£©}=q$£¨Îª³£Êý£©£¬
¼´£¨qk-2k£©n2+£¨bq-kq-2b+2k£©n-qb=0ºã³ÉÁ¢£¬
ËùÒÔq=2£¬b=0£¬ÓÖa1=2£¬ËùÒÔk=2£¬
¹Ê${a_n}=2n£¬{b_n}={2^n}$£»
£¨2£©½áÂÛ£º´æÔÚp=2¡¢q=5Âú×ãÌâÉèÌõ¼þ£»
ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚp£¬q¡ÊN*Âú×ãÌõ¼þ£¬
ÒòΪ$2{£¨{a_p}£©^5}-{b_q}=2016$£¬
Ôò2£¨2p£©5-2q=2016£¬»¯¼òµÃ£¬2p5-63=2q-5£¬
ÓÉp¡ÊN*µÃ2p5-63ΪÆæÊý£¬
ËùÒÔ2q-5ΪÆæÊý£¬¹Êq=5£¬
µÃ2p5-63=1£¬p5=32£¬¹Êp=2£¬
¹Êp=2¡¢q=5£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏî¼°Ç°nÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýy=f£¨x£©£¨f£¨x£©¡Ù0£©µÄͼÏóÓëx=1µÄ½»µã¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®0»ò1D£®1»ò2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¡°x£¾2¡±ÊÇ¡°x2-4£¾0¡±µÄ£¨¡¡¡¡£©
A£®±ØÒª¶ø²»³ä·ÖÌõ¼þB£®³ä·Ö¶ø²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýy=3|x+1|µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨-¡Þ£¬-1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©$£¨¦Ø£¾0£¬-\frac{¦Ð}{2}£¼¦Õ£¼\frac{¦Ð}{2}£©$µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄµ¥µ÷ÔöÇø¼äÊÇ[k¦Ð-$\frac{¦Ð}{12}$£¬$\frac{5¦Ð}{12}+k¦Ð$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨0£¬$\sqrt{10}£©¡È£¨\sqrt{10}£¬+¡Þ£©$¡È£¨$\sqrt{10}$£¬+¡Þ£©B£®£¨$\frac{3}{2}£¬+¡Þ$£©
C£®$[1£¬\frac{3}{2}£©¡È£¨\frac{3}{2}£¬+¡Þ£©$D£®$£¨1£¬\sqrt{10}£©¡È£¨\sqrt{10}£¬+¡Þ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½âÏÂÁйØÓÚxµÄ²»µÈʽ£º
£¨1£©$£¨\frac{1}{3}£©^{{x}^{2}-2x}£¾1$£»
£¨2£©log2$\sqrt{x}+lo{g}_{\sqrt{2}}£¨2x£©£¼\frac{23}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êý$f£¨x£©=\frac{1}{{\sqrt{4-{2^x}}}}$¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨2£¬+¡Þ£©B£®[2£¬+¡Þ£©C£®£¨-¡Þ£¬2£©D£®£¨-¡Þ£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{£¨3-a£©x-4a£¬x£¼1}\\{lgx£¬x¡Ý1}\end{array}\right.$ ÊÇ£¨-¡Þ£¬+¡Þ£©ÉϵÄÔöº¯Êý£¬ÄÇôaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨-¡Þ£¬3£©C£®[$\frac{3}{5}$£¬3£©D£®£¨1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸