精英家教网 > 高中数学 > 题目详情
6.${(x+\frac{1}{x})^9}$展开式中的第四项是(  )
A.56x3B.84x3C.56x4D.84x4

分析 利用二项展开式的通项公式,求得${(x+\frac{1}{x})^9}$展开式中的第四项.

解答 解:${(x+\frac{1}{x})^9}$展开式中的第四项是T4=${C}_{9}^{3}$•x6•${(\frac{1}{x})}^{3}$=84x3
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.空间中四点可确定的平面有(  )
A.1个B.4个C.1个或4个D.0个或1个或4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一个焦点与抛物线y2=4x的焦点相同,F1,F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为1.
(1)求椭圆C的方程;
(2)直线l:y=kx+m(m≠0)交椭圆C于A,B两点.
①若x轴上任意一点到直线AF2与BF2距离相等,求证:直线l过定点,并求出该定点的坐标;
若直线l的斜率是直线OA,OB斜率的等比中项,求△AOB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.各项均为正数的等比数列{an}满足a2=3,a4-2a3=9,
(1)求数列{an}的通项公式;
(2)设bn=(n+1)•log3an+1,数列$\left\{{\frac{1}{b_n}}\right\}$前n项和$T_n^{\;}$,在(1)的条件下,证明不等式Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{sin(x+α),x<0}\\{cos(x+β),x>0}\end{array}\right.$是偶函数,则下列结论可能成立的是(  )
A.α=$\frac{π}{4}$,β=-$\frac{π}{4}$B.$α=\frac{2π}{3},β=\frac{π}{6}$C.$α=\frac{π}{3},β=\frac{π}{6}$D.$α=\frac{5π}{6},β=\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若点(a,b)在函数f(x)=lnx的图象上,则下列点中不在函数f(x)图象上的是(  )
A.($\frac{1}{a}$,-b)B.(a+e,1+b)C.($\frac{e}{a}$,1-b)D.(a2,2b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设P为椭圆$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{\sqrt{3}}{2}$. 
(1)求椭圆的标准方程;
(2)设点E的轨迹为曲线C1,直线l:y=x+m交C1于M,N两点,线段MN的垂直平分线经过点P(1,0),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别;T∈[0,2]畅通;T∈[2,4]基本畅通;T∈[4,6]轻度拥堵;T∈[6,8]中度拥堵;T∈[8,10]严重拥堵.晚高峰时段(T≥2),从某市交能指挥中心选取了市区20个交能路段,依据其交能拥堵指数数据绘制的直方图如图所示,用分层抽样的方法从交通指数在[4,6],[6,8],[8,10]的路段中共抽取6个中段,则中度拥堵的路段应抽取3个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合U={0,1,2,3,4,5,6},A={0,1,3,5},B={1,2,4},那么A∩(∁UB)=(  )
A.{6}B.{0,3,5}C.{0,3,6}D.{0,1,3,5,6}

查看答案和解析>>

同步练习册答案