精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

【答案】(I)详见解析;(II).

【解析】试题分析:

(1)首先对函数求导,写出切线方程,讨论方程根的分布可得过点有三条直线与曲线相切;

(2)利用题意构造函数,由新函数的性质可得实数的取值范围是.

试题解析:解法一:(Ⅰ)当时,

设直线与曲线相切,其切点为

则曲线在点处的切线方程为:

因为切线过点,所以

,∴

在三个区间上至少各有一个根

又因为一元三次方程至多有三个根,所以方程恰有三个根,

故过点有三条直线与曲线相切.

(Ⅱ)∵当时, ,即当时,

∴当时,

,则

,则

(1)当时,∵,∴,从而(当且仅当时,等号成立)

上单调递增,

又∵,∴当时, ,从而当时,

上单调递减,又∵

从而当时, ,即

于是当时,

(2)当时,令,得,∴

故当时,

上单调递减,

又∵,∴当时,

从而当时,

上单调递增,又∵

从而当时, ,即

于是当时,

综合得的取值范围为

解法二:(Ⅰ)当时,

设直线与曲线相切,其切点为

则曲线在点处的切线方程为

因为切线过点,所以

,∴

,则,令

变化时, 变化情况如下表:

+

0

-

0

+

极大值

极小值

恰有三个根,

故过点有三条直线与曲线相切.

(Ⅱ)同解法一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如下图所示:

(I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;

(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= 的定义域为R,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,B={x∈Z|3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形,过平面,再过于点,过于点

Ⅰ)求证:

Ⅱ)若平面于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A′B′C′D′中,AB′与A′C′所在直线的夹角为(
A.30°
B.60°
C.90°
D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,顺次连接椭圆的四个顶点得到的四边形的面积为,点.

(Ⅰ)求椭圆的方程.

(Ⅱ)已知点,是椭圆上的两点.

(ⅰ)若,且为等边三角形,求的面积;

(ⅱ)若,证明: 不可能为等边三角形.

查看答案和解析>>

同步练习册答案