精英家教网 > 高中数学 > 题目详情

【题目】椭圆是椭圆与轴的两个交点,为椭圆C的上顶点,设直线的斜率为,直线的斜率为

(1)求椭圆的离心率;

(2)设直线与轴交于点,交椭圆于两点,且满足,当的面积最大时,求椭圆的方程.

【答案】(1)(2)

【解析】分析:1)由题意可得M(0,b),A(﹣a,0),B(a,0).由斜率公式可得k1,k2,再由条件结合离心率公式计算即可得到所求;

2)由(1)知,得a2=3c2,b2=2c2,可设椭圆C的方程为:2x2+3y2=6c2,设直线l的方程为:x=my﹣,直线l与椭圆交于P,Q两点,联立方程,运用判别式大于0和韦达定理,结合向量共线的坐标表示,求得S△OPQ,化简运用基本不等式可得最大值,进而得到a,b,c,即有椭圆方程.

详解:(1)

(2)由(1)知,得

可设椭圆的方程为:

设直线的方程为:,直线与椭圆交于 两点

因为直线与椭圆相交,所以

由韦达定理:

,所以,代入上述两式有:

所以

当且仅当时,等号成立, 此时

代入,有成立,所以所求椭圆的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)a.

(1)f(0)

(2)探究f(x)的单调性,并证明你的结论;

(3)f(x)为奇函数,求满足f(ax)<f(2)x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。

(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?

身体状况好

身体状况一般

总计

爱好运动

不爱好运动

总计

(2)现将位工人的健康指数分为如下组:,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求的误差值;

(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某企业的两座建筑物ABCD的高度分别为20m和40m,其底部BD之间距离为20m.为响应创建文明城市号召,进行亮化改造,现欲在建筑物AB的顶部A处安装一投影设备,投影到建筑物CD上形成投影幕墙,既达到亮化目的又可以进行广告宣传.已知投影设备的投影张角∠EAF,投影幕墙的高度EF越小,投影的图像越清晰.设投影光线的上边沿AE与水平线AG所成角为α,幕墙的高度EFy(m).

(1)求y关于α的函数关系式,并求出定义域;

(2)当投影的图像最清晰时,求幕墙EF的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若函数有极小值,求该极小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数的图象关于直线对称,当时,

1)作出的图象;

2)求的解析式;

3)若关于x的方程有解,将方程所有解的和记作M,结合(1)中的图象,求M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数恰好有两个零点,则实数等于为自然对数的底数)(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=lnx+ax2+(2a+1)x

(1)讨论的单调性;

(2)当a﹤0时,证明

查看答案和解析>>

同步练习册答案