精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥 中, 是等边三角形, 的中点, ,二面角 的大小为

(1)求证:平面 平面
(2)求 与平面 所成角的正弦值.

【答案】
(1)解:
,所以 面
即平面 平面
(2)解:方法一:
就是 的平面角,得
, 连结 ,则 ,又
,∴ 就是直线 与平面 所成的角


方法二:
,如图建立空间直角坐标系,

,令 , 则
为二面角 的平面角,得
,则
为面 的一法向量,则
,得
, 得
为平面 所成角为 , 则
【解析】(1)证明AC⊥面PBD,即可证明平面PBD⊥平面PAC;
(2)求出面PAC的法向量,利用向量的方法求AB与平面PAC所成角的正弦值.
【考点精析】关于本题考查的用空间向量求直线与平面的夹角,需要了解设直线的方向向量为,平面的法向量为,直线与平面所成的角为的夹角为, 则的余角或的补角的余角.即有:才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设A,B是两个非空集合,定义运算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},则A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点 , 是它们的一个交点,且 ,记椭圆和双曲线的离心率分别为 ,则 的最大值为( )
A.
B.
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(
A.(4,2018)
B.(4,2020)
C.(3,2020)
D.(2,2020)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足 = + ),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在 上的函数 ,且 恒成立.
(1)求实数 的值;
(2)若 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1, ,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为

查看答案和解析>>

同步练习册答案