精英家教网 > 高中数学 > 题目详情

f(x)在[0,+∞)上是单调递增函数,且f(x)为奇函数,若f(x)的反函数为g(x),则下列正确的是

[  ]
A.

g(-)<g()<g(1)

B.

g(1)<f(-)<g()

C.

g()<g(1)<g(-)

D.

g()<g(-)<g(1)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx.
(I)当a=1时,求f(x)的单调区间;
(II)若函数f(x)在(0,
1
2
)上无零点,求a
的最小值;
(III)若0<n<m,求证:
m-n
lnm-lnn
<2m

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x+a>0在A上有解,求实数a的取值范围.
解:令f(x)=21-x+a,因为f(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上单调递减
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
学习以上问题的解法,解决下面的问题,已知:函数f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函数f-1(x)及反函数的定义域A;
②设B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-1|+x2+kx.
(1)若k=2,求函数y=f(x)的零点;
(2)若函数y=f(x)在(0,2)内有两个零点x1x2.求k的取值范围及
1
x1
+
1
x2
的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(cos2x,a),
q
=(a,2+
3
sin2x
),函数f(x)=
p
q
-5(a∈R,a≠0)
(1)求函数f(x)在[0,
π
2
]
上的最大值
(2)当a=2时,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图象与直线y=-1有且仅有两个不同的交点,试确定b的值,(不必证明),并求函数y=f(x)在(0,b]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=1nx+
1
x-2
+ax(a≥0)

(Ⅰ)当a=0时,求f(x)的单调区间;
(Ⅱ)若f(x)在(0,1]上的最大值为
1
2
,求a的值

查看答案和解析>>

同步练习册答案