精英家教网 > 高中数学 > 题目详情

等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(    )

A.130               B.170               C.210             D.260

C

解法一:由题意得方程组

m为已知数,解得

解法二:设前m项的和为b1,第m+1到2m项之和为b2,第2m+1到3m项之和为b3,则b1b2b3也成等差数列。

于是b1=30,b2=100-30=70,公差d=70-30=40。∴b3=b2+d=70+40=110

∴前3m项之和S3m=b1+b2+b3=210.

解法三:取m=1,则a1=S1=30,a2=S2S1=70,从而d=a2a1=40。

于是a3=a2+d=70+40=110.∴S3=a1+a2+a3=210。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若-a7<a1<-a8,则必定有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足a2=6,S5=50,数列{bn}的前n项和Tn满足Tn+
1
2
bn=1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}为等比数列;
(Ⅲ)记cn=
1
4
anbn
,数列{cn}的前n项和为Rn,若Rn<λ对n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,a1=1;等比数列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an与bn
(Ⅱ)设cn=an+2bn(n∈N*),数列{cn}的前n项和为Tn.若对一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的(  )
A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案